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WINTER WHEAT PRODUCTION 
 
Major Field: Plant and Soil Sciences 
 
Abstract:  

Both temporal and spatial variation plays a major role in nutrient requirements 
and availability. This study was conducted to improve nutrient use efficiencies, 
demonstrate ability to visually identify nutrient needs throughout a cropping season, 
along with the evaluation of both soil nutrient recommendations across divergent 
environments and current producer fertilization management schemes. This project is an 
extension of the N-rich strip concept which is used to identify in season nitrogen 
deficiencies. Nutrient rich strips of nitrogen (N), phosphorus (P), potassium (K), and 
sulfur (S) were applied at 59 site years with 236 comparisons across Oklahoma, on 
multiple soil types with a wide range of environmental conditions and wheat varieties. 
Nutrient rich strips were applied at a rate of 257.6 kg ha-1 of product to a 1.8 by 30.5 
meter strip in producer fields. Urea (46-0-0), triple super phosphate (0-20-0), potash (0-0-
52) and gypsum (0-0-0-19) were used for sources of nitrogen, phosphorus, potassium and 
sulfur respectively. Composite surface (0-15 cm) and subsurface (15-45 cm) soil samples 
were taken prior to application for soil nutrient recommendations. Normalized difference 
vegetative index (NDVI) data was collected from the nutrient rich strips and the farmer 
practice, where the GreenSeeker™ sensor was used to estimate biomass. At maturity 
three one m2 subplots were hand harvest from each strip. Samples were threshed, grain 
weight recorded and grain samples analyzed for N, P, K and S content. Of 59 locations 
and 236 comparisons 17 responses were documented. Most responses were due to 
underestimated yield goal, overestimated NUE or identified by soil testing results. In the 
two years this study was conducted winter wheat grain yield was increased with the 
addition of N at seven locations, P at seven locations, K at three locations. Over the 59 
locations sampled there was no response to additional S fertilizer. Soil testing proved to 
be an adequate method for nutrient recommendation. At 75% of the locations yield was 
maximized by the producer with his or her NPKS management system.  The study was 
however unable to identify if the management strategies optimized yield economically.     
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CHAPTER I 
 

 

INTRODUCTION 

 

 Over 10.8 million metric tons of nitrogen (N) fertilizer was consumed in the United 

States of America in 2010 alone, with 1.2 million metric tons of the total N consumed being 

applied to wheat (FAO, 2009). Raun et al. (2010) have estimated the nitrogen use efficiency 

(NUE) of cereal crops to be 33%. Implying 0.8 million metric tons of applied N to wheat in 2010 

was not utilized. Improvement of current fertilizer application methods would decrease producer 

expenses and environmental effects. Variation in environment from field to field plays a major 

role in nutrient availability. Plant sensing systems have the potential to improve profitability and 

efficiency over traditional fertilizer application methods by taking into account the yearly 

potential of each field based on individual variability for that year (Zhao et al., 1999). Oklahoma 

State University currently promotes use of the GreenSeekerTM Sensor and N-Rich strip as its 

economical practice. With this system producers have the ability to treat their individual field 

needs separately. Applying nitrogen rich strips throughout a producers field and measuring its 

response can help producers economically by only applying the right rate of nitrogen where 

needed for that cropping season. According to Raun et al. (2010) when applications of N based on 

in-season estimation of yield (INSEY), NUE was improved by greater than 15%. Yet, N is not the 

only nutrient considered to vary from year to year and effect crop production, phosphorus (P), 

potassium (K), and sulfur (S) are all significant plant nutrients that impact plant production.  
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The variability of these nutrients, need to be taken into account to result in the most economical 

return. One potential method to account for and monitor this variability is nutrient rich strips, 

previously proven with the use of the nitrogen rich strip. Sulfur and nitrogen should behave 

similarly in soil systems and allow adequate interpretation of S variability. Unlike N and S, P and 

K are less mobile in the soil system (Johnston and Syers, 2009) and provide a new challenge for 

nutrient rich strips. Plant nutrient needs vary over different environments (soils, climate, etc.) and 

seed varieties. With the use of nutrient rich strips in P, K and S fertilizers as well as N, increase in 

yields can be made to maximize production across variable conditions found from field to field 

and across the state. 
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

 

Nitrogen 

 Nitrogen is one of the most abundant nutrients within a plant, second to only carbon. 

Novoa and Loomis (1981) described N as the “central element” for its many roles and functions 

throughout a plant. Nitrogen is a vital component of amino acids, proteins, co-enzymes, 

phytohormones, chlorophyll, cytoplasm, nucleic acids and in the action of energy transformation 

such as adenosine diphosphate (ADP) and adenosine triphosphate (ATP) (Barker and Pilbeam, 

2007; Marschner, 2012; Novoa and Loomis, 1981; Troeh and Thompson, 1993). Nitrogen is used 

to form amino acids, which are the building blocks of proteins. Proteins can perform as structural 

components in a cell, be involved in metabolic processes or be basic storage proteins, such as 

arginine and amides. Dhont et al. (2006) suggests vegetative storage proteins may help with 

winter hardiness, while Marschner (2012) expresses that seed storage proteins serve as primary 

amino acids for germination and growth during seed development. In cereal seeds 50-85% of 

proteins are storage proteins (Shewry, 2007). Proteins contain roughly 85% of the total N in a 

plant, but amino acids not only construct proteins but also help with the transportation and storage  
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of N (Barker and Pilbeam, 2007). Phytohormones regulate growth, germination, and metabolism 

processes. An absence of N will cease plant development and reproduction (Troeh and 

Thompson, 1993). Nitrogen in the chloroplast is known as chlorophyll proteins within the stroma 

and lamellae, more than 75% of N in the leaves are in this form (Barker and Pilbeam, 2007). 

Nitrogen is also found in nucleic acids which form deoxyribonucleic acid (DNA) and ribonucleic 

acid (RNA) that control the creation of new cells. Nucleic acids control the transport, storage, and 

coding of genetic information (Novoa and Loomis, 1981) 

 Nitrogen is a mobile nutrient, transported throughout the soil solution by mass flow. The 

two primary forms of N in the soil are organic and inorganic. Organic N makes up over 90% of 

the total N in the soil surface (Barker and Pilbeam, 2007) consisting of organic matter in different 

stages of decay (Barker et al., 2000), yet release of this N occurs at a sluggish rate. On the other 

hand the soil surface contains less than 2%  inorganic N (Barker and Pilbeam, 2007), which is 

available N that can be used by the plant or moved throughout the soil profile. Pate (1973) 

indicated that inorganic N in solution is the primary N source obtained within the immediate soil 

environment. Nitrate (NO3) and ammonium (NH4) are the two forms of N in which a plant can 

uptake through their roots. Nitrogen can go through many transformations within the soil system 

allowing it to be easily lost through denitrification, immobilization, ammonia volatilization, 

leaching, and plant loss. No method of N soil testing is widely excepted, except residual NO3 and 

NH4, due to the majority of N within the soil being present as complex organic compounds that 

depend on microbial activity for the release of available N as well as the possibility of losses 

(Dahnke and Johnson, 1990).  These losses are dependent on different environments: such as 

temperatures, precipitation, soil characteristics, pH, C:N ratios and microorganism activity. For 

the above reasons the N cycle has been labeled the “leaky system” (Lu et al., 2011; Troeh and 

Thompson, 1993). 
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Since N is a mobile nutrient that can be moved and lost fairly easy throughout the soil it 

is common to identify deficiency symptoms. It is identified as leaf chlorosis along the mid-rib 

present on older leaves first and moves toward younger leaves since N is mobile within the plant. 

Other symptoms are stunted plants, reduced root growth along with all other organs and decrease 

in protein assembly. Photosynthesis is reduced as chlorophyll starts to diminish from the plant 

leaves (Troeh and Thompson, 1993). The reduction of roots also affect water and nutrient uptake 

(Troeh and Thompson, 1993). Reduced N can decrease the number of tillers (Halse et al., 1969) 

and the development of florets decreasing grain production (Thomas et al., 1978). Leaf 

senescence in the later part of the growing season should not be mistaken for a N deficiency. 

Nitrogen is redistributed to grain fill around boot stage causing leaf senescence (Harper et al., 

1987). According to Spiertz and De Vos (1983) 65-85% of total nitrogen in grain is trans-located 

from plant vegetation, while Cox et al. (1986) found in wheat 100% of the nitrogen found in the 

grain must be derived from nitrogenous compounds remobilized and trans-located from other 

plant parts. Not only can plants be N deficient, but they can have an excess too. Excessive growth 

can reduce grain production (Troeh and Thompson, 1993) and generate lodging where the 

efficiency of translocation of N is negatively affected (Gasser and Iordanou, 1967). 

Nitrogen makes up 78% of the atmosphere, although it is a renewable resource the 

overuse of the nutrient should not be taken lightly. Roughly 105.02 million metric tons of N 

fertilizer were consumed globally in 2009 (FAO, 2009). High N losses lead to eutrophication and 

global warming caused by the release of nitrous oxide. Over fertilization along with leaching and 

erosion are some main factors that lead to eutrophication. With N being a limiting factor in 

estuaries (Vitousek et al., 1997) an increase from N leaching or erosion can lead to eutrophication 

causing the same symptoms as seen in P. This can also cause an excess of N in drinking water. 

The consumption of high NO3 water by infants results in a medical condition called Blue Baby 

Syndrome (methemoglobinemia). Troeh and Thompson (1993) state that water with a 
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concentration of 10 ppm of NO3 or greater is unsafe for infant consumption. The release of 

nitrous oxide by denitrification and volatilization are known to lead to global climate change. 

Marschner (2012) indicated global climate change is caused by the discharge of nitrous oxide 

from an inefficient conversion of fertilizer N in the soil system. The emissions of nitrous oxide 

convert sunlight energy into heat, warming the atmosphere past its original level (Byrnes, 1990). 

Increasing the nitrogen use efficiency (NUE) will help reduce how “leaky” the N cycle is. 

The use of cover crops will reduce erosion along with leaching during fallow periods and 

cropping systems allow diverse rooting systems within the soil. Certain crops will exploit 

nutrients from the shallow soil, while a different crop will exploit the nutrients deeper in the soil 

(Tilman, 1999). No-till diminishes fallow periods reducing soil loss and runoff  (Tilman, 1999). 

Along with management practices new fertilizer practices can decrease losses and increase NUE. 

Nitrification inhibitors reduce nitrous oxide emissions (Byrnes, 1990). Timing of N applications, 

N placement, and soil testing allow for an increase in NUE. Hamid (1972) found that N applied in 

wheat at tillering had maximum recovery rate and Hunter and Stanford (1973) saw an increase in 

recovery of N in applications during the spring compared to fall applications. Applying N by 

banding, injection, and split application allows N to be available at critical periods of maximum 

plant uptake (Sharpley et al., 1987). Using soil sample maps and precision application also allows 

you to apply N at limited areas throughout a field. Currently N application rates are based on pre-

plant NO3 soil tests and desired yield goals. Fox et al. (1989) reported NO3 soil test was accurate 

in predicting fertilizer N response, but also stated that the NO3 tests do not make accurate N rate 

estimates. Looking at crop response to soil test N, García et al. (2007) reported residual effects of 

N fertilizer were not discovered based on NO3 soil tests during a long term study started in 2000. 

In 2001-2004 Laboski et al. (2008) found soil samples analyzed for soil NO3 and total N did not 

significantly correlate with yield, crop response, nor N fertilizer requirements in corn. Bundy and 
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Malone (1988) expressed the importance of how soil characteristics and climate conditions can 

effect NO3 soil tests. 

Phosphorus 

Phosphorus is a critical, limiting nutrient needed by plants. Following N, P is the most 

extensively used fertilizer in the world (Batten, 1992). Phosphorus is involved in nearly every 

step throughout a plants life, from germination to reproduction. Once P is taken up by the plant it 

creates bonds with several other elements to form different particles. Every living cell contains P 

as a component of DNA and RNA within the cell’s nucleus, without P cells will not divide to 

create new cells (Troeh and Thompson, 1993). Phosphorus has the availability to have variable 

charges, enabling the storage and transfer of energy needed during photosynthesis, CO2 fixation, 

protein synthesis and nutrient transportation throughout the plant by ADP and ATP. Without an 

adequate amount of phosphoric acid (Pi) within the chloroplast photosynthesis will be reduced, 

while a high concentration of Pi in the chloroplast will inhibit CO2 fixation (Marschner, 2012). 

ATP is the main phosphate required for starch synthesis, in addition ATP is also diffused with 

other coenzymes needed for sucrose and cellulose synthesis (Marschner, 2012). Up to 90% of P 

within a wheat plant is transferred from the shoot to grain (Batten, 1992) and stored as phytate to 

provide P for future germinating seeds (Marschner, 2012). 

 An insufficient amount of P within the plant will result in sugar buildup causing nutrient 

deficiencies. This results in the formation of anthocynins, which also forms from frost injury 

(Troeh and Thompson, 1993). Phosphorus deficiencies are most often expressed by purpling of 

leaf margins of older leaves or the base of stems, due to the fact that P is mobile inside the plant. 

Plants may also become dark green, since P is not a factor of chlorophyll, as chlorophyll may 

increase during P deficiencies when there is still an abundance of available N (Troeh and 

Thompson, 1993). Other side effects are stunted growth and a delay in or lack of maturity.  
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Phosphorus is an immobile nutrient in the soil, mainly up taken by the plant through root 

interception or ion diffusion as H2PO4
- and HPO4

2-. Little applied P is lost throughout the soil, 

besides the amount taken up by the plant, from season to season. Soil applied P infrequently 

surpasses 25% efficiency (Johnston and Syers, 2009). Soil pH plays a role on the availability of 

P. Phosphorus fixation is at the lowest when pH are maintained at 6.0-7.0 (Laboski et al., 2008) 

.Johnston and Society (2001) suggested P occurs in four different pools within the soil system 

which was further refined by Syers et al. (2008). The four P pools consist of immediately 

available, readily available, low availability and very low availability: immediately available P is 

in the soil solution, readily available P is where P can be removed from the soil surface, low 

availability P is tightly bonded within the soil, and very low availability is the least available P 

since it has an extremely tight bond within the soil it takes several years to become available. Up 

to 5% of the soil can be fully engaged by the plant (Wiersum, 1962) causing a high percentage of 

total P (immobile nutrients) in the soil to be unavailable. Currently plant available P is based on 

soil test P (STP) using varies extractions (ex. Mehlich 3, Bray 1-P) to simulate plant availability 

based on regional soil properties (pH, CEC) (García et al., 2007). Bray 1 has a good correlation 

between P uptake in acidic soils and crop response while Olsen and Mehlich-3 have good 

correlation in both acidic and alkaline soils (Hammond et al., 1989; Mallarino and Atia, 2005). 

Cope (1981) showed that throughout 50 years, P fertilization rates corresponded with soil test P. 

Extractable soil test P is a relatively good prediction of available soil P for plant uptake, therefore 

indicating previous P applications are not permanently lost but available for future plant 

consumption (Kamprath, 1967). Jemison et al. (2006) expressed the need on refinement of soil 

test P critical levels for P fertilization recommendations. 

 Although very little P is lost from individual fields, a large quantity is lost globally. 

Major agricultural sources of P losses are from leaching, runoff, and erosion. Simard et al. (1998) 

stated P has been reported to leach in soils that are course-textured with high organic matter, due 
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to the low level of soil contents that play a role in fixating P. While leaching is very uncommon, 

10 kg P ha-1 is lost by the process of erosion (Smit et al., 2009). Losses are frequently seen with 

over fertilization or high applications of animal waste. Commonly in freshwater aquatic 

ecosystems P is the limiting nutrient and excessive additions of P can result in unstable growth of 

plants and algae resulting in hypoxia (oxygen depletion) from algae bloom decomposition. 

Eutrophication’s negative effects consist of fish kills, toxin production, unpleasant drinking 

water, extermination of native species, and the degradation of a bio diverse ecosystem (Bennett et 

al., 2001; Tilman, 1999).  

 While P losses need to be decreased, phosphorus use efficiency (PUE) needs to be 

increased. Bennett et al. (2001) noted two basic solutions to decrease the impact of excessive P 

causing eutrophication; reduce P applications and increase the amount of active P sinks. Newer 

farming practices will also decrease P losses as well as increase PUE at the same time. No-till and 

cover crops will insulate the soil from erosion and reduce compaction, while increasing pore 

space and improving soil structure for root interception. Increased organic matter through these 

practices will also produce an increase in readily available P. Crop rotations will deplete soil 

pathogens and nematodes destroying roots, allowing for an increase in P uptake by rooting 

systems (Syers et al., 2008). The use of precision agriculture allows the comparison of soil 

sample maps and yield maps to interpret variable P application rates throughout a field (Sharpley 

et al., 1987; Syers et al., 2008). The decrease of acidic soils by applying lime will decrease P 

fixation (Johnston and Syers, 2009). Environmental programs are also available to prevent 

erosion, such as buffer strips. Syers et al. (2008) suggested several management systems that 

would improve PUE; application of substances that compete with P for ion absorption sites within 

the soil, uniform application of manure, the use of slow release P fertilizers, banding P with seed, 

along with the strong fertilization method of only applying P to the critical level of plant available 

P in the soil. 
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Potassium 

Potassium is a vital nutrient needed for crop production. There are three forms of K 

within the soil, unavailable, slowly available, and readily available: unavailable form-where K is 

existent in primary minerals throughout soil, slowly available form-where K is fixed between clay 

particles and readily available form-where K is composed within the soil solution. According to 

Rehm and Schmitt (1997) 90-98% of the estimated 20,000 ppm of K in the soil is in the 

unavailable form. The most plentiful cation in a plant is K (Pettigrew, 2008). Potassium is 

essential to plants not because of the construction of any apparatus but for the many roles it has 

within the plant. Potassium is pulled into guard cells opening the stamatal allowing 

photosynthesis and respiration. Fischer (1968) found that K uptake was consistent with the 

increase of that stomatal opening. During times of drought K withdraws from the guard cells to 

prevent evaporation. It is also known that K promotes cell elongations and retains adequate water 

levels (Mengel, 1999). Furthermore K is involved with activating enzymes for plant growth, 

protein synthesis, and the translocation of amino acids and compounds formed during 

photosynthesis. Potassium triggers a minimum of 60 plant growth enzymes and accumulates in 

roots to help draw water in and rouse new root hairs (Armstrong and Griffin, 1998). 

 Potassium is a relatively immobile nutrient in the soil, taken up by the root system as K+ 

primarily by diffusion but can also be up taken by mass flow. Losses of K are less likely, 

compared to mobile nutrients, since there are relatively abundant amounts of K intermittent in the 

soil. Ashley et al. (2006) stated that the lithosphere contains 2.5% K making it the fourth most 

sufficient mineral in the soil. However K can still be lost through leaching and fixation. 

Exchangeable K is present for plant uptake, exchangeable with the soil, fixation, or leaching 

(Mengel, 1978). Potassium can easily fluctuate back and forth from the slowly available form to 

readily available form, making it plant available or non-available throughout an individual 

cropping year. Also K concentration diminishes around plant root systems as most K is taken up 
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by diffusion (Ashley et al., 2006). Potassium availability is dependent on many soil factors such 

as cation exchange capacity (CEC), temperature, moisture, and cultivation practices. Clay content 

and organic matter determines the CEC, higher CEC allows for more available cations (K+) 

within the soil. Armstrong and Griffin (1998) said as soil temperatures decrease the availability of 

K to be consumed by the plant decreases. Soil moisture is needed to transport K through the soil 

by mass flow and to replenish up taken K by diffusion. Cultivation practices are important for 

many reasons; root respiration requires air for the uptake of K (Rehm and Schmitt, 1997), 

compaction layers make roots unavailable to penetrate deep K concentrations, incorporated K 

fertilizer is more readily available than surface applied fertilizer (Armstrong and Griffin, 1998). 

Leaching is plausible, although K is a relatively immobile nutrient, if the soil is acidic and/or 

water is moving down at a faster rate than it is being up taken by the plant. Potassium fixation is 

more apparent in soils that contain high clay content (2:1 clays). Also anaerobic conditions 

increase the possibility of K fixation due to the limited availability of oxygen (Armstrong and 

Griffin, 1998). Potassium can also be lost from the plant. Potassium can be lost in the plant roots 

when in contact with soil since K is a soluble salt within the plant (Gregory et al., 1979). 

Potassium deficiencies are more likely in production systems where large quantities of 

biomass is removed, as this biomass is important in maintaining organic matter which contains 

high concentrations of K. Potassium deficiencies are usually characterized by stunted growth and 

chlorosis along the margin of older leaves, hence K is mobile inside the plant. Plant analysis are 

rarely helpful, they cannot determine future application rates or deficiencies but can show if the 

plant had luxury consumption of K (Rehm and Schmitt, 1997). Soil tests are the best way to 

express the amount of available K in the soil solution for application rates. Available K measures 

the amount of K in the soil solution and the amount of exchangeable K (Rehm and Schmitt, 

1997). This test is a good tool for pre plant applications, although it doesn’t help throughout the 
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growing season since K can be leached, lost by the plant and exchanged from readily available 

form to the slowly available form. 

Sulfur 

Sulfur fertilization has been readily ignored since few deficiencies have been previously 

revealed. Additional S fertilizer applications showed no significant yield increases on several 

crops in Michigan (Christenson, 1998). Attribution to consistent crop inputs; such as fertilizers, 

manures, atmospheric deposition, irrigation and so forth have supplied plants with needed S. SO2 

can be retrieved from the atmosphere through the stomatal, however the plant cannot acquire the 

necessary amount to fulfill its needs (Jordan and Ensminger, 1959). Within the last decade S 

deficiencies have been reported in cereal crops with the reduction of S emissions (Zhao et al., 

1999). Therefore, S is mainly taken up as SO4
2- through the plant roots within the soil. According 

to Droux (2004) the consumption of sulfate is a four step procedure: uptake, assimulation, 

reduction, and the production of cysteine. Sulfur contributes to the production of: plant growth 

regulators and amino acids for protein synthesis. Jordan and Ensminger (1959) noted that the 

amino acid cystine consists of 27% sulfur, while methionine consists of 21%, both plant growth 

regulators thiamine and biotin and the amino acid cysteine comprise sulfur as well. The majority 

of S taken up stays within plant biomass instead of being transferred into grain production, unlike 

other nutrients. Merely 48% of the 10-20 kg of S ha-1 needed by wheat is transported into grain 

(Zhao et al., 1999). 

Sulfur is a relatively mobile nutrient which acts like N within the soil solution. Like N, 

mineralizable S has not been successfully measured within the soil, therefore mineralizable S is 

not a component of the present S soil test (SO4-S) (Fox et al., 1989). Sulfur cycles amongst 

organic and inorganic sulfur. Plant available S, known as inorganic S can be lost through 

leaching, runoff/erosion, plant removal/plant losses, volatilization and immobilization. Sulfur 
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leaching can be increased by P and calcium (Ca) additions (Jordan and Ensminger, 1959), fallow 

soils (Garwood and Tyson, 1973), or just where there is an abundant amount of S within the soil. 

Runoff, leaching, and erosion losses are primarily S losses created by soils that are fallow or 

removal of previous year’s residue. During high amounts of S uptake, hydrogen sulphide (H2S) 

and other forms of S can be discharged into the atmosphere by the plant (Scherer, 2001). 

Anaerobic environments will cause S volatilization, creating H2S emissions to precipitate (Jordan 

and Ensminger, 1959).  

Sulfur deficiencies are correlated with interveinal chlorosis on newer plant leaves first. 

Late vegetative S deficiencies cause optimal grain yields to dwindle. Sulfur levels have to remain 

sufficient throughout the growing season to produce quality grain. Once S deficiencies have been 

revealed, grain development has already been negatively affected (Zhao et al., 1999). Haneklaus 

et al. (1995) found that S deficiencies had to be corrected before their appearance to prevent yield 

degradation. Soil S test only express the amount which was available at the time the soil sample 

was taken. Therefore S04
2- can increase or decrease throughout the cropping season since S is a 

relatively mobile nutrient. As seen in crop response to soil test N, soil test SO4 also showed no 

residual effects on S fertilization in Argentina (García et al., 2007). In arid regions SO4 tests may 

be suitable, in other regions sulfate is easily lost through leaching resulting in a poor correlation 

between soil test SO4 and crop response (Marx et al., 1996). In wheat production, Arnall and 

García (2012) noted S soil tests predicts little on yield response. Throughout Dick and Castellano 

(1991) research they saw season variability in soil SO4 levels where S levels increased during 

periods favoring evapotranspiration, confirming exchangeable soil test SO4 alone is not a good 

prediction of plant available SO4. Tissue analyses are another way to determine plant S needs. 

Individual leaves will result in different sulfur needs since S is immobile in the plant. Tissue 

samples during early vegetative growth give inaccurate nutrient readings and S deficiencies at the 
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end of vegetative growth will not correct symptoms for the present year’s crop (Zhao et al., 

1999). 

N-Rich Strips  

N-rich strips are simple, yet practical fertilization practices that can be easily adopted by 

most. The method of this practice is to apply a strip or strips across a field that will be non N 

limiting throughout the entire growing season. Identification of N deficiencies will be easily 

recognizable with the use of this strip, by comparing it to the entire field. When using this 

practice Raun et al. (2010) recommends only applying half of the expected N needed by the plant 

during planting and making top dress recommendations based on the N-Rich strip in the middle 

of the cropping season. By using the N-Rich strip and GreenSeekerTM Sensor, N application rates 

are no longer guesstimates. With the use of optical sensors, in season yield potential can be 

predicted from normalized difference vegetative index (NDVI) readings (Raun et al., 2010). 

Predicting potential yield and top dress rate is done by the Sensor Based Nitrogen Rate Calculator 

(SBNRC) by using the NDVI readings recorded from the N-Rich strip and the farmer’s practice, 

the area next to the N-Rich Strip which is considered to have the same N rate that was applied to 

the entire field. NDVI is divided by the number of growing degree days greater than zero (from 

planting to sensing) calculating INSEY (Lukina et al., 2001). The top dress N fertilizer rate is 

then calculated by estimating the N uptake for the N-Rich strip and the farmer’s practice. 

According to Stone et al. (1995) savings of up to 57 kg of N ha-1 are plausible when using a 

variable rate application based on a spectral index compared to a fixed top dress rate. As shown in 

2009-2010 the SBNRC method routinely outperformed current producer fertilization methods, 

while producing comparable yields but decreasing N application rates by 22.42 kg ha-1 (Butchee 

et al., 2011). The N-Rich Strips can also be used without the GreenSeekerTM Sensor by using 

visual effects throughout the field. If there is a difference between the strip and the rest of the 
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field, N is needed while on the other hand if there are no visual differences an addition of N will 

unlikely increase yields. 
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CHAPTER III 
 

 

OBJECTIVE 

The objectives of this state wide multifaceted project were to: demonstrate the ability to 

visually identify nutrient needs throughout a cropping season, determine the relationship between 

pre-plant soil tests and nutrient response across divergent environments and evaluate if Oklahoma 

producer’s current fertilization management scheme for N, P, K and S are maximizing yields.  
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CHAPTER IV 
 

 

METHODOLOGY 

 

This study was conducted throughout two growing seasons. In 2011-2012 there 

were 42 locations within Oklahoma and 40 locations in 2012-2013. Prior to application 

15 soil samples were taken using a 2.54 cm diameter soil probe from each site at depths 

of 0-15 and 15-30 cm. Samples were mixed from each depth, allowing two composite 

samples from each site. The samples were then sent to Oklahoma State University Soil, 

Water, and Forage Analytical Laboratory to be analyzed for pH, NO3-N, extractable P, K, 

S, Ca, and Mg. Samples were dried at 65°C overnight and ground to pass a 2 mm sieve 

prior to extraction and analysis. The soil pH was measured by using a combination 

electrode within a 1:1 ratio of soil to water suspension. Nitrate-N was determined using a 

1 M KCl extraction solution with 2.0 g of soil to 20 mL of solution with 15 minutes of 

shaking time. Nitrate-N was then determined by automated colorimetric flow-injection 

analysis (Lachat Quickchem 8000, Loveland, CO). Mehlich-3 (M-3) was used to find 

extractable P, K, Ca and Mg, by extracting 2.0 g of soil with 20 mL of M3 solution and 

shaking for 5 minutes. Exchangeable S was found by mixing 10.0g of soil with 25 mL of 

0.008 M calcium phosphate solution and shaking for 30 minutes. Concentration of P, K, 

Ca, Mg and S extractions were determined by analysis with inductively coupled plasma 
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atomic emission spectroscopy analyzer (ICP-AES). 

A plot consisted of four parallel strips roughly 1.8 x 30.5 m (WxL). A tractor with 

a NPKS applicator (Figure 1), built by engineers at Oklahoma State University, was 

transported to every site. The applicator applied a dry fertilizer for each of the four 

treatments. The treatments consisted of urea (46-0-0), triple super phosphorus (0-20-0), 

potash (0-0-52), and gypsum (23% Ca and 19% S). Although in 2012-2013 the urea 

treatment was replaced with ammonium nitrate (34-0-0), due to drought conditions and 

volatilization concerns. The NPKS applicator contained four dry fertilizer boxes, each 

holding their own individual fertilizer. Each fertilizer box had three polyurethane tubes 

connected to a 12 m boom where it dispersed its fertilizer evenly throughout a 1.8 m 

strip, parallel to one another. Each fertilizer box was ground driven individually to 

control product application rate. The dry fertilizer was then conveyed through 

polyurethane tubing pneumatically by a PTO driven fan. Each treatment was roughly 

applied at the rate of 257.6 kg of product ha-1 around sowing. 

 Prior to top dressing, GreenSeekerTM readings were collected for the total length 

of each treatment, including the farmer practice treatment, to record in-season NDVI 

values. At maturity three 1 m2 sections were harvested from each strip at every individual 

site by hand cutting the total biomass 2.54 cm above the soil surface. Each biomass 

sample was then placed into its own individual labeled bag, head first, and the bag was 

tied around the stems with bailing twine. Samples were dried in an air forced oven at 

roughly 65 °C. Prior to threshing dry weights were taken and recorded. Each sample was 

then threshed and grain was collected, weighed and recorded. The grain was then ground 

and rolled in glass bottles with 4 stainless steel pins for 48 hours. Grain samples were 
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then sent to Oklahoma State University Soil, Water, and Forage Analytical Laboratory 

and analyzed for N, P, K, and S content. Grain samples were first sieved through a 2 mm 

sieve. Total N was analyzed by the combustion method where 0.145-0.16 g of the grain 

sample was placed in the LECO TruSpec 628 (St. Joseph, MI) for analysis. Phosphorus, 

K, and S grain content were determined by the digestible minerals method as follows: 10 

mL of nitric acid was added to 0.5 g of the grain sample and left to set for one hour. The 

samples were then placed into a digestion block for 30 min. at 60 °C with an additional 

2.5 hours at 115°C. The samples were then removed and allowed to cool to room 

temperature. Once cooled the samples were diluted with deionized (DI) water to 50 mL 

where it was then analyzed by the Spectro Ciros CCD ICP-AES (Mahwah, NJ). 

Statistical Analysis was performed using SAS 9.3. Individual locations were analyzed 

separately using Proc GLM and Dunnett’s Test identifying significant variables using 

alpha=0.05. Grain yield is reported at 12.5% moisture and all recommendations and 

interpretations are based on the Oklahoma Soil Fertility Handbook (Zhang and Raun, 

2006). 
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CHAPTER V 
 

 

FINDINGS 

 

 Drought conditions in 2011 prevented the sampling of some locations to a depth 

of 45 cm. Therefore soil sampling depths varied across locations. Due to failed crop or 

miscommunication with producers, 30 locations (Table 1) of the 42 (Figure 2) applied 

were harvested in 2011-2012. Many producers reduced nutrient inputs during 2011-2012 

due to extreme environment conditions.  

Drought conditions in 2012 also prevented the sampling of some locations to a 

depth of 45 cm. Due to frost injury, rye problems or wheat being completely grazed out, a 

total of 29 locations (Table 2) of the 40 applied (Figure 3) were harvested in 2012-2013. 

As seen in 2011-2012 many producers reduced nutrient inputs during 2012-2013 due to 

extreme environment conditions from previous year. Grain responses to added nutrients 

are reported separately due to specific responses to each variable. 

Nitrogen 

 Surface and subsurface soil test NO3-N results for harvested locations in 2011-

2012 varied throughout Oklahoma. Surface soil test results ranged from 3 to 56 ppm with  
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an average of 18 ppm, while subsurface samples ranged from 2 to 51.5 ppm with an 

average of 15.4 ppm (Table 3). Nitrogen recommendations are based on yield goals, 

where 2.2 kg of N ha-1 should be added for every 67.2 kg of wheat ha-1 expected. When 

applying N, soil sample results should be taken into consideration. Producer yield goals 

were not recorded, thus yield goals were assumed using total N considering pre-plant, 

with seed, top-dress and residual. 

Total N applications (pre-plant, with seed and top-dress) also varied throughout 

the locations. Total applied N ranged from 0 kg ha-1 to 100.8 kg ha-1 (Table 4). The N 

rich strips applied an additional 118.5 kg ha-1 of N compared to the farmer practice. 

Dunnett’s test reported five responsive locations, where the N rich strip significantly 

increased grain yield when compared to the farmer practice (Table 5). 

Location 1 had 6 ppm of residual NO3-N within the surface and 8 ppm within the 

subsurface. Farmer practice consisted of a N application of 22.4 kg ha-1 applied at 

planting resulting in a grain yield of 3213 kg ha-1. Grain yield was increased by 846 kg 

ha-1 with the N rich strip treatment, where the N rich strip produced a grain yield of 4059 

kg ha-1.  An estimated yield goal of 1612.8 kg ha-1 was expected and adequate for the 

location. Significant yield increase in the N rich strip can be contributed to the farmer 

practice applying insufficient N to maximize yield. 

Location 8 contained 24 ppm of residual NO3-N in surface and 15 ppm in the 

subsurface. The producer applied 12.5 kg ha-1 with seed and top-dressed 77.3 kg ha-1 by 

broadcast, resulting in 89.8 kg ha-1 of total N applied, producing a grain yield of 2677 kg 

ha-1. The N rich strip produced a grain yield of 3696 kg ha-1, an increase of 1019 kg ha-1. 
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The farmer practice applied enough N, accounting for residual, for a yield goal of 5315.5 

kg ha-1. Differences in yield goal compared to actual yield could be attributed to 

ammonia loss with the application of urea on the surface. Meyer et al. (1961) reported 

broadcasting urea on soil surfaces need significant rainfall or irrigation (12.7 mm) 

directly following application to prevent ammonia volatilization. Top-dress applications 

of winter wheat in Oklahoma typically occur from January to late March. According to 

the Hinton Oklahoma Mesonet Station, near location 8, there were 18 rainfall events 

during this time period where only three of them accumulated more than 12.7 mm. In 

addition to the lack of adequate precipitation at N application, Meyer et al. (1961) 

showed that crop residue and initially moist soil surface can increase the severity of 

ammonia volatilization. Consequently, at this site we can hypothesize that both the no-till 

management practice and lack of adequate rainfall at application increased N losses 

resulting in farmer practice yields below yield goal. 

Location 14 had 5.5 ppm in the surface with a subsurface of 3 ppm of residual 

NO3-N. A top-dress N application of 51.5 kg ha-1 was made generating a grain yield of 

2781 kg ha-1. The N rich strip improved yield by 1416 kg ha-1 producing 4197 kg ha-1. A 

yield goal of 2116.8 kg ha-1 was estimated using total applied and residual N. The N rich 

strip indicated yield potential was underestimated. Hence, yields were not maximized due 

to inadequate N inputs. 

Location 24 had 4.5 ppm NO3-N in the surface and 8 ppm within the subsurface. 

Prior to planting a N application of 33.6 kg ha-1 was applied as well as a top-dress 

application of 44.8 kg ha-1, resulting in a total application of 78.4 kg ha-1. A farmer 

practice yield goal of 3192 kg ha-1 was estimated by combining applied and residual N. 
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Farmer practice strip produced a grain yield of 2436 kg ha-1, while the N rich strip 

produced 3783 kg ha-1. The N rich strip increased grain yield by 1347 kg ha-1. Similar to 

location 8, urea was also broadcasted as the N top-dress method for this location. As 

previously mentioned differences in yield goal compared to actual yield may be due to 

ammonia loss with the application of urea on the surface. According to the Cherokee 

Oklahoma Mesonet Station, near location 24, 23 rainfall events took place during the top-

dress application period where two of the events accumulated more than 12.7 mm. In 

addition to inadequate precipitation at N application, Meyer et al. (1961) and Ernst and 

Massey (1960) reported increases in pH increase ammonia volatilization. Subsequently, a 

near neutral pH level of 6.8 and inadequate precipitation increased N losses giving rise to 

the significant N rich strip yield increase.  

Location 30 had residual soil NO3-N levels consisting of 4 ppm in the surface and 

2 ppm in the subsurface. Nitrogen was not applied during the growing season resulting in 

a grain yield of 1589 kg ha-1. The N rich strip boosted yield 1347 kg ha-1, concluding a 

yield of 2936 kg ha-1. A research station was used as location 30, giving rise to why there 

was a minimum residual soil NO3-N level as well as no N applied for wheat production. 

Therefore, maximum yield potential was not reached, due to the lack of additional N 

throughout the growing season.  

Despite the N rich strip increasing grain yield at 5 of the 30 harvested locations 

during 2011-2012, grain N content was significantly increased at 11 of the locations. The 

N rich strip also increased S grain content at a total of eight locations. At five of these 

locations grain content of both N and S was increased, two of which grain yield was also 

increased. 
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Nitrogen removal was significantly increased at six locations. There was only one 

location where N removal increased and grain yield did not increase. However, the 

addition of N increased grain yield and the removal of: N, P, K and S at locations 1 and 

30, N, K and S at location 24 and N and S at location 14. The removal of S was increased 

by the addition of N at location 16, although grain yield was not improved. 

As previously seen in 2011-2012, surface and subsurface soil test NO3-N results 

for 2012-2013 harvested locations varied throughout Oklahoma. Surface soil test results 

ranged from 1.5 to 68.5 ppm with an average of 29.3 ppm, while subsurface samples 

ranged from 1.5 to 37.5 ppm with an average of 15.9 ppm (Table 6). 

Total N applications (pre-plant, with seed and top-dress) also varied throughout 

the locations. Total applied N ranged from 0 kg ha-1 to 151.2 kg ha-1 (Table 7). Due to 

dry conditions ammonium nitrate was used for the N rich strip in 2012-2013, adding 87.6 

kg ha-1 of N above the farmer practice. Dunnett’s test reported two responsive locations, 

where the N rich strip significantly increased grain yield when compared to the farmer 

practice (Table 8). 

 Location 38 had 68.5 ppm of residual NO3-N within the surface and 8 ppm within 

the subsurface. Farmer practice consisted of a pre-plant N application of 31.4 kg ha-1, 

producing a grain yield of 3083 kg ha-1. The farmer practice had enough total N, 

including residual and applied N, for a yield goal of 6082 kg ha-1. The N rich strip 

produced a grain yield of 4275 kg ha-1, improving grain production by 1192 kg ha-1.It is 

hypothesized that residual NO3-N was decreased due to immobilization or N loss with a 

soil pH of 6.5. Also with a moist spring in 2013, N leaching may have been plausible. 
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 Location 43 had residual soil NO3-N levels consisting of 6 ppm in the surface and 

9 ppm in the subsurface. The farmer practice was comprised of a top-dress N application 

of 22.4 kg ha-1, with an estimated yield goal of 1680 kg ha-1 considering both applied and 

residual N. Farmer practice produced a grain yield of 2954 kg ha-1, although the yield 

goal was exceeded the N rich strip verified the assumed yield goal was under estimated. 

Figure 4 is an image of location 43 where the difference in height of the N rich strip is 

visible at maturity. The farmer practice reduced maximum grain yield by 2474 kg ha-1, 

where the N rich strip generated a grain yield of 5428 kg ha-1.Therefore, inadequate N 

inputs significantly decreased maximum grain yield. 

 As seen in 2011-2012 the addition of N increased grain N content at a total of 11 

locations in 2012-2013, where six of those locations also increased S grain content. One 

of these locations consisted of location 38 where grain yield was also improved. At both 

locations 36 and 43 N, K and S grain content were significantly increased compared to 

the farmer practice, although grain yield was only improved at location 43.  

Nitrogen removal was significantly increased at five locations in 2012-2013 with 

the addition of N. Nitrogen, P, K and S total uptake was also improved at both locations 

where grain yield was improved. 

Phosphorus 

 Phosphorus recommendations are based on soil test results, where estimated 

available soil P is recorded as percent sufficiency. In Oklahoma a soil test resulting in 

32.5 ppm is considered 100% sufficient. Soil test P (STP) levels extended from 9.5 ppm 

to 91.5 ppm with an average across locations being 36.6 ppm in 2011-2012 (Table 3). 
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While the average was above sufficiency, 16 locations dropped below 32.5 ppm, a level 

considered insufficient. Phosphorus availability is also controlled by soil pH. Soil pH 

levels of harvested locations ranged from 4.5 to 8.2, while the average soil pH over 

locations was 5.8 (Table 3). For winter wheat production in Oklahoma a soil pH level of 

5.5 to 7.0 is considered to be optimum, 37% of harvested locations fell outside this 

optimum soil pH range, while only one location was above 7.0. Similar P and pH levels 

were found by Zhang et al. (1998) during a soil testing review analyzed across 

Oklahoma, where approximately 50% of P levels in 1996 were below sufficiency and 

30% of sampled locations in 1985. Also 39% of locations in 1996 had soil pH levels 

below 5.5. Two harvested locations resulted in soil pH levels below critical and STP 

below sufficiency. 

 Total P applications (pre-plant and with seed) ranged from 0 kg ha-1 to 18.6 kg ha-

1 (Table 4). Of the 12 locations where P was applied, 11 of them were applied at planting 

by banding with seed. Several authors reported banding P is more efficient then 

broadcast, even when fertilizer was worked into the soil, banded P applications could be 

reduced between 11- 40% (Sanchez et al., 1991; Sanchez et al., 1990; Sander et al., 1990; 

Sander et al., 1991). Therefore producers could possibly be banding P to be more 

efficient and economic compared to other P application methods. Sanchez et al. (1991) 

and Welch et al. (1966) found that efficiency of banding P ceased once STP levels were 

sufficient. The P rich strip added 51.5 kg ha-1 of P in addition to the farmer’s application. 

Dunnett’s test reported four responsive locations where the P rich strip significantly 

increased grain yield when compared to the farmer practice (Table 9). 
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 Location 12 had a soil pH of 4.9 with a STP level of 20.5 ppm within the surface. 

A P application of 10.1 kg ha-1 was applied at planting, resulting in a farmer practice 

grain yield of 3679 kg ha-1. Phosphorus rich strip produced a grain yield of 4681 kg ha-1 

improving grain yield by 1002 kg ha-1. Soil test P reported 90.4% sufficient and 

recommended 9.4 kg ha-1 of P be added. Although it has been reported that banding P is 

more efficient, Zhang et al. (2005) found that when banding P on acidic soils applying 

14.7 kg ha-1 of P was most sufficient in alleviating aluminum toxicity. Although P was 

applied by an efficient method, according to Oklahoma State University an inadequate 

rate of P was applied to alleviate aluminum toxicity. In addition, K was also insufficient 

at this location, therefore according to Baule (1918) percent sufficiency can be reduced to 

89%.  

 Location 13 had a neutral soil pH of 6.9 with a STP level of 19 ppm. Phosphorus 

was applied prior to planting at 7.3 kg ha-1, producing a grain yield of 2971 kg ha-1 for the 

farmer practice. When compared to the P rich strip, which produced 3990 kg ha-1, the 

farmer practice grain yield was reduced by 1019 kg ha-1 compared to the maximum 

potential. Although P was applied, soil test reported P levels being 89% sufficient and a 

recommended 10.7 kg ha-1 of P was needed to reach sufficiency. However since the P 

application was banded with seed the rate should have been sufficient.  

 Location 20 had a soil pH below the critical level at 4.5, as well as a STP level of 

19 ppm which is below 100% sufficiency. At planting a P application of 6.7 kg ha-1 was 

made by the farmer. When banding P on acidic soils Oklahoma State University 

recommends a rate of 14.7 kg ha-1 of P.  Phosphorus rich strip increased grain yield by 

1468 kg ha-1 where the farmer practice produced 2833 kg ha-1 and the P rich strip 
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produced 4301 kg ha-1. Figure 5 is an image of location 20 where the difference in height 

and color of the P rich strip is visible during vegetative growth. Soil P levels were 89% 

sufficient and 10.7 kg ha-1 of P was recommended to bring P levels to sufficiency. 

Inadequate P was applied based on fertility recommendations, giving rise to grain yield 

increase from P rich strip application. 

 Location 24 also had a neutral soil pH of 6.8 with a STP level of 66 ppm. No P 

was added, due to STP being 100% sufficient. The farmer practice produced a grain yield 

of 2436 kg ha-1, while the P rich strip improved yield by 1485 kg ha-1 with a grain yield 

of 3921 kg ha-1. Both location13 and 24 soil samples were sent to Kansas State 

University for additional P analysis using Bray and Olsen extractions. The results of this 

analysis gave no indication of why P response was recorded, thus results were not 

included. 

As previously mentioned, a high percent of Oklahoma producers have soil pH 

levels below critical for winter wheat production. To avoid high yield losses 6 of the 10 

locations with low pH levels banded P at planting. Toxic metals bind with P making both 

the toxic metals and P unavailable. This is a short term solution and has to be done 

annually since as P is removed more aluminum and manganese become available (Zhang 

et al., 2005). All locations where P was banded to compensate for sub optimum soil pH 

levels soil will continue to acidify with the additions of N until pH is corrected by the 

application of lime.  

 In the 2011-2012 cropping season grain P content was significantly increased at 

four locations, of which only two were locations that had significant increases in grain 
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yield. It was observed at location 21 that the P rich strip increased both P and K 

concentration in the grain. 

 Phosphorus removal from the P rich strip was significantly increased at six 

locations, three of these locations having significantly increased grain yields as well. The 

P rich strip also significantly increased nutrient removal of N at one location, K at four 

locations and S at two locations. At location 24 where the N and P rich strips 

significantly increased grain yields, the P rich strip significantly increased N, P, K and S 

removal. Also at location 12 where soil P and K levels were insufficient, P and K 

removal were increased in the P rich strip. This was not seen in the K rich strip at this 

location. 

Soil test P levels, in 2012-2013, ranged from 12.5 ppm to 150.0 ppm with an 

average across locations being 43.9 ppm (Table 6). As seen in the previous year the 

average was above sufficiency and 15 locations fell below 32.5 ppm. Furthermore 

harvested locations soil pH levels ranged from 4.4 to 8.2, while the average soil pH over 

locations was 6.0 (Table 6), 57% of harvested locations fell outside this optimum soil pH 

range of 5.5 to 7.0. Twelve harvest locations had a soil pH below 5.5, while five locations 

had a pH above 7.0. Similar P and pH levels were recorded in the preceding year, as well 

in Zhang et al. (1998). However locations with soil pH levels outside of the optimum 

range increased from 2011-2012 NPKS locations. Six locations had soil pH levels below 

critical and STP below sufficiency and four locations with soil pH levels above 7.0 and 

STP below sufficiency. 



30 

 

 Total P application (pre-plant and with seed) rates were similar to 2011-2012, 

ranging from 0 kg ha-1 to 18.6 kg ha-1 (Table 7). Of the 19 locations where P was applied, 

15 of them were applied by banding with seed during planting. Phosphorus application 

methods were similar to 2011-2012 although locations where P was applied increased. 

Phosphorus rich strip added 51.5 kg ha-1 of P beyond the farmer practice. Dunnett’s test 

reported three responsive locations where the P rich strip significantly increased grain 

yield when compared to the farmer practice (Table 10). 

 Location 32 had a calcareous soil pH of 8.0 with a STP level of 12.5 ppm. 

According to Oklahoma State University STP was 82.5% sufficient and a recommended 

17.1 kg ha-1 of P should be added. Farmer practice applied a pre-plant of 7.9 kg ha-1 of P, 

producing a grain yield of 1671 kg ha-1. Grain yield was significantly increased by 467 kg 

ha-1, where the P rich strip improved grain yield to 2138 kg ha-1. The farmer applied 9.2 

kg ha-1 less than Oklahoma State University recommends, giving rise to grain yield 

improvement with the addition of P. 

 Location 55 had an acidic soil pH of 4.6 with a STP level of 17 ppm. Not only did 

the soil pH level fall below the critical level, but STP was 87% sufficient as well. A rate 

of 17.6 kg ha-1 of P was recommended. The farmer applied P at planting, by banding 11.2 

kg ha-1, resulting in a grain yield of 1801 kg ha-1. The P rich strip improved grain yield by 

1179 kg ha-1 producing a grain yield of 2980 kg ha-1. As seen in the preceding year, when 

banding P on acidic soils with STP levels below sufficient, Oklahoma State recommends 

a P application of 14.7 kg ha-1. Therefore the addition of inadequate P fertilizer on an 

acidic and low STP soil resulted in a grain yield improvement with the application of a P 

rich strip. 
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 Location 56 also had a soil pH level below critical and STP level below sufficient. 

Soil test reported a soil pH of 4.4 and a STP level of 26 ppm, being 94.8% sufficient. An 

application of 5.1 kg ha-1 of P was recommended. The farmer applied 11.2 kg ha-1 of P at 

planting, resulting in a grain yield of 2138 kg ha-1. The P rich strip produced a grain yield 

of 3278 kg ha-1, improving grain yield by 1140 kg ha-1. As previously mentioned in 

location 55, a rate of 14.7 kg ha-1 of P is recommended when banding P in acidic and low 

STP soils. 

 In 2012-2013 P grain content was significantly increased at eight locations. Of the 

three locations where P additions significantly improved grain yield, P grain content was 

increased at two of these locations. Potassium grain content was also improved at two of 

these locations and N and K grain content at another one of these locations. Another 

location increased N and S grain content with the addition of P, although P grain content 

was not increased. 

Of the eight locations where P grain content was improved five of them increased 

total P removal, two of which (54 and 55) also increased the removal of N, K and S. 

Location 56 also increased the removal of P and K, although grain content was not 

increased. All locations where the addition of P increased grain yield also significantly 

increased P removal. 

Potassium 

 Soil test K (STK) averaged 212.6 ppm over 2011-2012 harvested locations, 

ranging from 119 ppm to 422 ppm (Table 3). While 11 locations were below average 

only two locations had K levels lower than 125 ppm, which is considered to be 100% 
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sufficient according to Oklahoma State University recommendations. In 1985 and 1996 

Zhang et al. (1998) reported over 80% of 3,075 locations sampled in Oklahoma had K 

levels above 125 ppm, comparable to 93% of harvested NPKS locations. This may be due 

to low K removal by grain and little K losses from semi-arid conditions. Like P, K 

recommendations are based on estimated available K from soil test results. Only 1 of the 

30 harvested locations had a K application in 2011-2012, where the producer added 4.5 

kg ha-1 (Table 4). The K rich strip added 134 kg ha-1 of K and 121.1 kg ha-1 of chloride 

(Cl) compared above the farmer practice. Dunnett’s test reported two responsive 

locations where the K rich strip significantly increased grain yield when compared to the 

farmer practice (Table 11). 

 Location 4 had a STK level of 191.5 ppm with no additional K added producing a 

2366 kg ha-1 grain yield for the farmer practice. Although grain yields would not be 

expected to increase with the application of additional K, yields did increase by 830 kg 

ha-1 with the K rich strip producing 3196 kg ha-1. Girma et al. (2007) noted K increases 

drought tolerance in stressful years from the long-term Magruder plots. Applications of K 

during drought like conditions have been reported to improve: water use efficiency 

(WUE) during vegetative growth, leaf area, root growth, vegetative growth and rate of 

growth (Andersen et al., 1992a; Andersen et al., 1992b). The surface composite sample 

for this location was returned to Oklahoma State University Soil, Water, and Forage 

Analytical Laboratory to be reanalyzed for Cl levels. Analysis showed a soil Cl 

concentration of 7.2 ppm. Oklahoma State University recommends a soil test Cl level of 

17.5 ppm in the top 45 cm of the soil profile to be adequate (Zhang et al., 2000). Since 

only the surface composite soil sample was analyzed for Cl, Oklahoma State University 
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recommends multiplying that value by 3 to provide a total surface and subsurface (0-45 

cm) Cl level. Therefore, a soil Cl level of 21.6 ppm was estimated at application. It would 

be assumed Cl levels were adequate, however both Freeman et al. (2006) and LaRuffa et 

al. (1999) reported Cl response in Oklahoma sandy loam soils. The K rich strip at this 

location also significantly increased N uptake, similar to Freeman et al. (2006) where an 

increase in N uptake with a Cl application to the sandy loam soil location was reported. 

Significant yield increase in K rich strip could be due to the increase of drought tolerance 

by K or to an increase of Cl and the effect it has on N uptake. 

 Location 12 had a STK level of 119 ppm, although STK was below sufficiency no 

additional K was added. This resulted in K rich strip increasing yield by 726 kg ha-1, 

where the farmer practice produced a grain yield of 3679 kg ha-1 and the K rich strip 

produced 4405 kg ha-1. Soil tests reported K at 98.8% sufficient, therefore 4 kg ha-1 of K 

should have been applied prior to the growing season. As previously mentioned, location 

12 also had STP levels below sufficiency. 

 The K rich strip failed to increase K grain content at any location. Although, N 

and S grain content was significantly increased at location 22 from the application of the 

K rich strip. Even though K grain content was not increased at any location, the addition 

of K significantly increased K removal at location 4 and 24. Location 4 also increased N, 

P and S removal as well as improved grain yield significantly. Nitrogen and S removal 

were also increased at location 24 due to the addition of K. 

Soil test K levels from 2012-2013 harvested locations averaged 216.2 ppm, 

ranging from 68.5 ppm to 436 ppm (Table 6). Four of the harvested locations had K 
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levels below 100% sufficient, 125 ppm. Similar to STP levels, STK levels were also 

comparable to 2011-2012 soil test results and Zhang et al. (1998), where 86% of 

harvested NPKS locations in 2012-2013 were above 100% sufficient. Three harvested 

locations received a K application in 2012-2013, where one location applied 1.3 kg ha-1 

and two locations applied 11.7 kg ha-1 of K fertilizer (Table 7). 

Surface soil tests reported Cl- levels ranging from 7.0 to 66.7 ppm, averaging 20.3 

ppm over harvested locations. Subsurface Cl- levels averaged 17.4 ppm, extending from 

6.6 to 72.8 ppm (Table 6). Potassium rich strip added 134 kg ha-1 of K and 121.1 kg ha-1 

of Cl above the farmer practice. Dunnett’s test reported one responsive location where the 

K rich strip significantly increased grain yield when compared to the farmer practice 

(Table 12). 

 Location 33 had a surface STK level of 169.5 ppm, well above 100% sufficient. 

Soil test Cl levels were also taken into consideration, where the surface Cl level consisted 

of 11.4 ppm and a subsurface of 15.8 ppm. The farmer practice produced a grain yield of 

2384 kg ha-1. Although both K and Cl were adequate to produce maximum yields, the K 

rich strip increased grain yields by 725 kg ha-1 generating a grain yield of 3109 kg ha-1. 

With drought conditions in 2012 it is hypothesized the addition of K boosted vegetative 

growth compared to the farmer practice, where Andersen et al. (1992a) and (Andersen et 

al., 1992b) reported K applications improved vegetative production. 

 The addition of K did not increase K grain content in 2012-2013, as seen in the 

previous year; however it did increase N grain content at location 54. Total K removal 

nonetheless was increased at location 35 where N and S removal were also significantly 
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increased with the addition of K. Nitrogen and S removal were also increased at location 

3 where the addition of K increased grain yield. 

Sulfur 

 Surface soil tests reported SO4-S levels fluctuating from 4.4 ppm to 31 ppm, 

while averaging 13 ppm across 2011-2012 harvested locations. Average subsurface SO4-

S was 11.6 ppm, as S levels were widely variable across locations varying from 5.1 ppm 

to 47.5 ppm (Table 3). Like N, S recommendations are based on yield goal and soil test 

results. Sulfur requirements are 10% of the N requirement minus surface and subsurface 

soil test values (Zhang et al., 2000). Only 1 of the 30 locations had a SO4 application in 

2011-2012, where the producer added 4.5 kg ha-1 (Table 4). Sulfur rich strip added 47.9 

kg ha-1 of S above the farmer practice. Dunnett’s test reported no responsive locations 

where the S rich strip significantly increased grain yield when compared to the farmer 

practice.  

 Sulfur, a secondary nutrient, was included in this study due to an increase in 

reported deficiencies across the world, with reductions in S emissions (Zhao et al., 1999). 

In the United States S deficiencies have been reported as far south as Kansas (Lamond, 

1997). Therefore the application of the S rich strip was intended to document if 

Oklahoma winter wheat is also suffering from S deficiencies. In the 2011-2012 cropping 

season S applications did not increase grain yields at any location. In fact soil test results 

reported average total SO4-S well above sufficient. Location 3, which had the lowest 

residual SO4-S level, had enough S to reach a yield goal of 9889 kg ha-1 although the 

farmer practice only produced 2487 kg ha-1. These high S concentrations may be due to 
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average annual S addition of 9.8 kg ha-1 from rainfall (Harper, 1942) or low S removal 

where roughly half of the S taken up by the plant is removed with grain (Zhao et al., 

1999). In addition S is added through impurities in fertilizers (Zhang et al., 2000).  

Even though the S rich strip failed to significantly increase grain yields in 2011-

2012, S grain content was significantly increased at 4 locations. The S rich strip also 

increased P and N content at one location each, where N and S were increased at location 

4 and P and S were increased at location 9. Sulfur additions failed to significantly 

increase the removal of N, P, K and S. 

 Surface soil tests reported SO4-S levels fluctuating from 3 ppm to 33 ppm, while 

2012-2013 harvested locations averaged 13.2 ppm. Subsurface SO4-S levels varied from 

2.5 to 52.5 ppm, averaging 14.2 ppm over harvested locations (Table 6). Sulfur additions 

comprised of two locations, where both locations applied a split application at planting 

with seed and as top-dress. Total applications consisted of 19 and 20 kg ha-1 of S (Table 

7). Sulfur rich strip increased additional S by 47.9 kg ha-1 compared to the farmer 

practice. Dunnett’s test reported no responsive locations where the S rich strip 

significantly increased grain yield when compared to the farmer practice, similar to 2011-

2012 NPKS results. Location 35, which had the minimum total SO4-S level of 2013 

harvested locations, had adequate S for a yield goal of 5376 kg ha-1 where the farmer 

practice produced a 3718 kg ha-1 grain yield. 

 Sulfur additions only increased S grain content at one location in 2012-2013. 

Nitrogen grain content was also increased at another location from the addition of S. The 
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addition of S also increased the removal of K and S at location 5 although neither S grain 

content nor yield was increased at this site. 

 Although S deficiencies were not recorded in either year, Girma et al. (2005) 

found grain yield response to additions of S is possible in fine sandy loam soils in 

Oklahoma. Even though a grain yield response to S was reported, it was inconsistent and 

was only significant 6 of 14 site years. This is consistent with Lamond (1997) who stated 

responses to S additions in Kansas are more suitable in course textured soils with low 

organic matter. 
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CHAPTER VI 
 

 

CONCLUSIONS 

 In 59 site years, 236 comparisons were made towards Oklahoma producer’s current N, P, 

K and S fertilization management practices. Of these 236 comparisons only 17 were significant, 

where two sites had two significant comparisons at the same location. The lack of responses 

suggests overall producers in Oklahoma are properly managing N, P, K and S inputs in a way that 

maximizes yield. 

Seven locations reported a significant response to the addition of N. Responsive locations 

consisted of under estimated yield potential and N losses, whether it was ammonia losses, 

immobilization or leaching, due to independent environmental conditions. Although 52 locations 

received adequate N to produce maximum grain yields, over application of N at these locations 

could not be calculated and are likely plausible. 

Responsive locations to the addition of P were comprised of seven sites. However initial 

soil tests reported 18 locations with STP below sufficiency, 11 locations with soil pH levels 

below a critical 5.5, and nine locations where both STP levels were below sufficiency and soil pH 

levels were below critical. Out of a total of 38 locations expected to have a response to an 

addition of P only seven locations reported a response, concluding 32 locations applied adequate 

P to produce maximum grain yields. Four of these responsive locations were identified by initial 

soil tests and inadequate P applications. However two of these responsive locations added  
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adequate P fertilizer according to Oklahoma State University recommendations to meet 

sufficiency and one responsive location had a STP level above 100% sufficiency. Concluding, the 

majority of initial soil tests reported the need for P additions, whether it may be due to low STP, 

soil pH levels below critical or both low STP and soil pH levels below critical. Further research is 

needed on STP level recommendations in neutral and calcareous soils for Oklahoma winter wheat 

production. 

 Response to the addition of K consisted at three locations, where only one of the 

locations was identified by initial soil tests. Another responsive location was hypothesized to be 

due to the addition of Cl. Initial soil test reported adequate soil Cl levels, although Cl losses in 

sandy loam soils have been reported. Further research is needed on the addition of K in 

Oklahoma winter wheat to determine if STK levels are appropriate and the effects of added K in 

drought conditions. Genetic variety by environment interactions also needs further research. 

 The addition of S did not significantly increase grain yields. As initial soil tests reported 

harvested locations with the minimum soil SO4-S levels were adequate to produce grain yields 

above estimated yield goals. However, producers should be conscious of soil SO4-S levels due to 

an intensive farming practices and the recognition of S deficiencies throughout the world. Subsoil 

sampling should also be taken into consideration when soil sampling, where surface soil SO4-S 

only contains roughly half of available S when comparing averages across all locations 

The majority of producer’s current N, P, K and S fertilization management practices are 

adequate, where 44 of 59 harvested locations maximized grain yields. Furthermore, non-

responsive locations have the potential to maintain maximum grain yields with a decrease in 

fertilizer inputs. Soil testing proved to be an accurate method of predicting P, K and S response.
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TABLES 
Table 1. Soil characteristics and classification for 2011-2012 NPKS rich strip locations with site responses 

Location County Soil Series Soil Description 
Tillage  
Practice 

Response 

N P K S 

1 Cotton Tillman Fine, mixed, superactive, thermic Vertic Paleustolls Conventional *    
2 Tillman Hollister Fine, smectitic, thermic Typic Haplusterts      
3 Tillman Grandfield Fine-loamy, mixed, superactive, thermic Typic Haplustalfs      
4 Jackson Grandfield Fine-loamy, mixed, superactive, thermic Typic Haplustalfs    *  
5 Jackson Tillman Fine, mixed, superactive, thermic Vertic Paleustolls      
6 Washita Carey Fine-silty, mixed, superactive, thermic Typic Argiustolls      
7 Grady Pond Creek Fine-silty, mixed, superactive, thermic Pachic Argiustolls Conventional     
8 Caddo Pond Creek Fine-silty, mixed, superactive, thermic Pachic Argiustolls No-till *    
9 Custer St. Paul Fine-silty, mixed, superactive, thermic Pachic Argiustolls      
10 Noble Kirkland Fine, mixed, superactive, thermic Udertic Paleustolls No-till     
11 Noble Renfrow Fine, mixed, superactive, thermic Udertic Paleustolls Conventional     
12 Noble Milan Fine-loamy, mixed, superactive, thermic Udic Argiustolls No-till  * *  
13 Kingfisher Port Fine-silty, mixed, superactive, thermic Cumulic Haplustolls Conventional  *   
14 Noble Grant Fine-silty, mixed, superactive, thermic Udic Argiustolls No-till *    
15 Noble Grant Fine-silty, mixed, superactive, thermic Udic Argiustolls No-till     
16 Noble Kirkland Fine, mixed, superactive, thermic Udertic Paleustolls No-till     
17 Garfield Pond Creek Fine-silty, mixed, superactive, thermic Pachic Argiustolls No-till     
18 Garfield Pond Creek Fine-silty, mixed, superactive, thermic Pachic Argiustolls No-till     
19 Garfield Grant Fine-silty, mixed, superactive, thermic Udic Argiustolls No-till     
20 Grant Pond Creek Fine-silty, mixed, superactive, thermic Pachic Argiustolls No-till  *   
21 Grant Kirkland Fine, mixed, superactive, thermic Udertic Paleustolls No-till     
22 Grant Pond Creek Fine-silty, mixed, superactive, thermic Pachic Argiustolls No-till     
23 Grant McLain Fine, mixed, superactive, thermic Pachic Argiustolls No-till     
24 Alfalfa Devol Coarse-loamy, mixed, superactive, thermic Typic Haplustalfs  * *   
25 Major McLain Fine, mixed, superactive, thermic Pachic Argiustolls      
26 Major Pond Creek Fine-silty, mixed, superactive, thermic Pachic Argiustolls      
27 Major Pond Creek Fine-silty, mixed, superactive, thermic Pachic Argiustolls      
28 Major McLain Fine, mixed, superactive, thermic Pachic Argiustolls No-till     
29 Major McLain Fine, mixed, superactive, thermic Pachic Argiustolls      
30 Payne Port Fine-silty, mixed, superactive, thermic Cumulic Haplustolls Conventional *    

* indicates grain yield significance at 0.05 significance level, respectivel
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Table 2. Soil characteristics and classification for 2012-2013 NPKS rich strip locations with site responses 

Location County Soil Series Soil Description 
Tillage 
Practice 

Response 

N P K S 

31 Tillman Hollister Fine, smectitic, thermic Typic Haplusterts      
32 Washita Obaro Fine-silty, mixed, superactive, thermic Typic Haplustepts Conventional  *   
33 Custer St. Paul Fine-silty, mixed, superactive, thermic Pachic Argiustolls    *  
34 Grady Pond Creek Fine-silty, mixed, superactive, thermic Pachic Argiustolls Conventional     
35 McLain Keokuk Course-silty, mixed, superactive, thermic Fluventic Haplustolls Conventional     
36 Kingfisher Renfrow Fine, mixed, superactive, thermic Udertic Paleustolls Conventional     
37 Noble Kirkland Fine, mixed, superactive, thermic Udertic Paleustolls Conventional     
38 Noble Port Fine-silty, mixed, superactive, thermic Cumulic Haplustolls Conventional *    
39 Noble Norge Fine-silty, mixed, active, thermic Udic Paleustolls No-till     
40 Garfield Pond Creek Fine-silty, mixed, superactive, thermic Pachic Argiustolls No-till     
41 Garfield Grant Fine-silty, mixed superactive, thermic Udic Argiustolls No-till     
42 Garfield Grant Fine-silty, mixed, superactive, thermic Udic Argiustolls No-till     
43 Woods Grant Fine-silty, mixed, superactive, thermic Udic Argiustolls Conventional *    
44 Woods Burford Fine-silty, mixed, superactive, thermic Typic Haplustepts Conventional     
45 Woods Bethany Fine, mixed superactive, thermic Pachic Paleustolls No-till     
46 Alfalfa Devol Course-loamy, mixed, superactive, thermic Typic Haplustalfs No-till     
47 Alfalfa Grant Fine-silty, mixed, superactive, thermic Udic Argiustolls No-till     
48 Major Canadian Course-loamy, mixed, superactive, thermic Udic Haplustolls No-till     
49 Major Reinach Course-silty, mixed, superactive, thermic Pachic Haplustolls No-till     
50 Major Eda Mixed, thermic Lamellic Ustipsamments No-till     
51 Osage Braman Fine-silty, mixed, superactive, thermic Pachic Argiustolls No-till     
52 Pawnee Renfrow Fine, mixed, superactive, thermic Udertic Paleustolls Conventional     
53 Grant Bethany Fine, mixed, superactive, thermic Pachic Paleustolls Conventional     
54 Grant Bethany Fine, mixed, superactive, thermic Pachic Paleustolls No-till     
55 Grant Pond Creek Fine-silty, mixed, superactive, thermic Pachic Argiustolls No-till  *   
56 Grant Pond Creek Fine-silty, mixed, superactive, thermic Pachic Argiustolls No-till  *   
57 Noble Bethany Fine, mixed, superactive, thermic Pachic Paleustolls Conventional     
58 Pottawatomie Asher Fine-silty, mixed, superactive, thermic Fluventic Haplustolls Conventional     
59 Pottawatomie Keokuk Course-silty, mixed, superactive, thermic Fluventic Haplustolls conventional     
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Table 3. Initial soil test ranges across all 2011-2012 harvested locations 

 pH NO3
- NO3

- STP STK SO4
- SO4

- 
  0-15 cm 15-45 cm 0-15 cm 0-15 cm 0-15 cm 15-45 cm 
  ppm ppm ppm ppm ppm ppm 

Average 5.8 18.0 15.4 36.6 212.6 13.0 11.6 
Maximum 8.2 56.0 51.5 91.5 422.0 31.0 47.5 
Minimum 4.5 3.0 2.0 9.5 119.0 4.4 5.1 
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Table 4. Producer application timing and rates (kg ha-1) for 2011-2012 harvested locations 

Location 
Pre-Plant With Seed Top-Dress Total Applied 

N P K S N P N N P K S 

1 0.0 0.0 0.0 0.0 22.4 4.9 0.0 22.4 4.9 0.0 0.0 

2 - - - - - - - - - - - 

3 0.0 0.0 0.0 0.0 0.0 0.0 44.8 44.8 0.0 0.0 0.0 

4 0.0 0.0 0.0 0.0 0.0 0.0 44.8 44.8 0.0 0.0 0.0 

5 44.8 0.0 0.0 0.0 0.0 0.0 0.0 44.8 0.0 0.0 0.0 

6 55.1 0.0 0.0 0.0 12.1 13.5 0.0 67.2 13.5 0.0 0.0 

7 51.5 0.0 0.0 0.0 0.0 0.0 31.4 82.9 0 0.0 0.0 

8 0.0 0.0 0.0 0.0 12.5 18.6 77.3 89.8 18.6 0.0 0.0 

9 - - - - - - - - - - - 

10 0.0 0.0 0.0 0.0 0.0 0.0 56.0 56.0 0.0 0.0 0.0 

11 0.0 0.0 0.0 0.0 0.0 0.0 56.0 56.0 0.0 0.0 0.0 

12 0.0 0.0 0.0 0.0 9.1 10.1 31.4 40.5 10.1 0.0 0.0 

13 28.0 7.3 4.5 4.5 0.0 0.0 0.0 28.0 7.3 4.5 4.5 

14 0.0 0.0 0.0 0.0 0.0 0.0 51.5 51.5 0.0 0.0 0.0 

15 0.0 0.0 0.0 0.0 0.0 0.0 51.5 51.5 0.0 0.0 0.0 

16 0.0 0.0 0.0 0.0 9.1 10.1 31.4 40.5 10.1 0.0 0.0 

17 0.0 0.0 0.0 0.0 8.1 9.0 67.2 75.3 9.0 0.0 0.0 

18 0.0 0.0 0.0 0.0 8.1 9.0 67.2 75.3 9.0 0.0 0.0 

19 0.0 0.0 0.0 0.0 0.0 0.0 67.2 67.2 0.0 0.0 0.0 

20 0.0 0.0 0.0 0.0 21.5 6.7 33.6 55.1 6.7 0.0 0.0 

21 0.0 0.0 0.0 0.0 21.5 6.7 33.6 55.1 6.7 0.0 0.0 

22 0.0 0.0 0.0 0.0 53.8 16.8 33.6 87.4 16.8 0.0 0.0 

23 110.2 0.0 0.0 0.0 0.0 0.0 0.0 110.2 0.0 0.0 0.0 

24 33.6 0.0 0.0 0.0 0.0 0.0 44.8 78.4 0.0 0.0 0.0 

25 - - - - - - - - - - - 

26 - - - - - - - - - - - 

27 - - - - - - - - - - - 

28 0.0 0.0 0.0 0.0 10.0 14.9 90.7 100.7 14.9 0.0 0.0 

29 33.6 0.0 0.0 0.0 0.0 0.0 33.6 67.2 0.0 0.0 0.0 

30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Table 5. Soil test results, application rates and grain yield for responsive locations to the addition of N in 2011-2012 

Location 
Soil Test 

NO3
- 

Soil Test 
NO3

- 
Farmer 

Applied N 
N Strip 

Applied N 
Farmer 
Practice 

N Rich  
Strip 

 0-15 cm 15-45 cm   Grain Yield 

 ppm ppm kg ha-1 kg ha-1 kg ha-1 kg ha-1 

1 6.0 8.0 22.4 140.9 3213 4059 

8 24.0 15.0 89.8 208.3 2677 3696 

14 5.5 3.0 51.5 170.0 2781 4197 

24 4.5 8.0 78.4 196.9 2436 3783 

30 4.0 2.0 0.0 118.5 1589 2936 
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Table 6. Initial soil test ranges across all 2012-2013 harvested locations 

 pH NO3
- NO3

- STP STK SO4
- SO4

- Cl- Cl- 

  0-15 cm 15-45 cm 0-15 cm 0-15 cm 0-15 cm 15-45 cm 0-15 cm 15-45 cm 
  ppm ppm ppm ppm ppm ppm ppm ppm 

Average 6.0 29.3 15.9 43.9 216.2 13.2 14.2 20.3 17.4 
Maximum 8.2 68.5 37.5 150.0 436.0 33.0 52.5 66.7 72.8 
Minimum 4.4 1.5 1.5 12.5 68.5 3.0 2.5 7.0 6.6 



52 

 

Table 7. Producer application timing and rates (kg ha-1) for 2012-2013 harvested locations  

Location 
Pre-Plant With Seed Top-Dress Total Applied 

N P K S N P K S N S N P K S 

31 - - - - - - - - - - - - - - 

32 25.1 7.9 0.0 0.0 0.0 0.0 0.0 0.0 15.7 0.0 40.8 7.9 0.0 0.0 

33 - - - - - - - - - - - - - - 

34 35.8 11.2 0.0 0.0 0.0 0.0 0.0 0.0 31.4 0.0 67.2 11.2 0.0 0.0 

35 12.5 18.6 0.0 0.0 0.0 0.0 0.0 0.0 72.0 0.0 84.5 18.6 0.0 0.0 

36 67.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 67.2 0.0 0.0 0.0 

37 14.1 15.7 0.0 0.0 0.0 0.0 0.0 0.0 66.2 0.0 80.3 15.7 0.0 0.0 

38 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 31.4 0.0 31.4 0.0 0.0 0.0 

39 4.7 5.5 1.3 0.0 0.0 0.0 0.0 0.0 66.9 0.0 71.6 5.5 1.3 0.0 

40 64.3 0.0 0.0 0.0 10.1 11.2 0.0 0.0 33.6 0.0 108.0 11.2 0.0 0.0 

41 64.3 0.0 0.0 0.0 10.1 11.2 0.0 0.0 33.6 0.0 108.0 11.2 0.0 0.0 

42 64.3 0.0 0.0 0.0 5.6 8.3 0.0 0.0 33.6 0.0 103.5 8.3 0.0 0.0 

43 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 22.4 0.0 22.4 0.0 0.0 0.0 

44 50.4 0.0 0.0 0.0 6.3 9.3 0.0 0.0 33.6 0.0 90.3 9.3 0.0 0.0 

45 32.5 14.2 0.0 0.0 0.0 0.0 0.0 0.0 43.8 0.0 76.3 14.2 0.0 0.0 

46 50.4 0.0 0.0 0.0 6.3 9.3 0.0 0.0 56.0 0.0 112.7 9.3 0.0 0.0 

47 50.4 0.0 0.0 0.0 6.3 9.3 0.0 0.0 56.0 0.0 112.7 9.3 0.0 0.0 

48 0.0 0.0 0.0 0.0 15.1 16.9 0.0 0.0 56.9 0.0 72.0 16.9 0.0 0.0 

49 0.0 0.0 0.0 0.0 15.1 16.9 0.0 0.0 56.9 0.0 72.0 16.9 0.0 0.0 

50 10.3 0.0 0.0 0.0 12.1 13.5 0.0 0.0 128.8 0.0 151.2 13.5 0.0 0.0 

51 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 89.6 0.0 89.6 0.0 0.0 0.0 

52 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 79.6 0.0 79.6 0.0 0.0 0.0 

53 55.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 55.6 0.0 0.0 0.0 

54 0.0 0.0 0.0 0.0 28.0 11.2 0.0 0.0 56.0 0.0 84.0 11.2 0.0 0.0 

55 0.0 0.0 0.0 0.0 28.0 11.2 0.0 0.0 56.0 0.0 84.0 11.2 0.0 0.0 

56 0.0 0.0 0.0 0.0 28.0 11.2 0.0 0.0 56.0 0.0 84.0 11.2 0.0 0.0 

57 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

58 0.0 0.0 0.0 0.0 1.5 4.8 11.7 2.2 94.1 16.8 95.6 4.8 11.7 19.0 

59 0.0 0.0 0.0 0.0 1.5 4.8 11.7 2.2 100.8 18.0 102.3 4.8 11.7 20.2 
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Table 8. Soil test results, application rates and grain yield of responsive locations to the addition of N in 2012-2013 

Location 
Soil Test 

NO3
- 

Soil Test 
NO3

- 
Farmer 

Applied N 
N Strip 

Applied N 
Farmer 
Practice 

N Rich  
Strip 

 0-15 cm 15-45 cm   Grain Yield 

 ppm ppm kg ha-1 kg ha-1 kg ha-1 kg ha-1 

38 68.5 8.0 31.4 119.0 3083 4275 

43 6.0 9.0 22.4 110.0 2954 5428 
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Table 9. Soil test results, applications rates and grain yield of responsive locations to the addition of P 
in 2011-2012 

Location pH STP 
Farmer 

Applied P 
P Strip 

Applied P 
Farmer 
Practice 

P Rich 
Strip 

  0-15 cm   Grain Yield 
  ppm kg ha-1 kg ha-1 kg ha-1 kg ha-1 

12 4.9 20.5 10.1 61.6 3679 4681 
13 6.9 19.0 7.3 58.8 2971 3990 
20 4.5 19.0 6.7 58.2 2833 4301 
24 6.8 66.0 0.0 51.5 2436 3921 
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Table 10. Soil test results, application rates and grain yield of responsive locations to the addition of 
P in 2012-2013  

Location pH STP 
Farmer 

Applied P 
P Strip 

Applied P 
Farmer 
Practice 

P Rich 
Strip 

  0-15 cm   Grain Yield 
  ppm kg ha-1 kg ha-1 kg ha-1 kg ha-1 

32 8.0 12.5 7.9 59.4 1671 2138 
55 4.6 17.0 11.2 62.7 2980 1801 
56 4.4 26.0 11.2 62.7 2138 3278 
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Table 11. Soil test results, application rates and grain yield of responsive locations to the addition of 
K in 2011-2012 

Location 
Soil Test 

Cl- 
STK 

Farmer 
Applied K 

K Strip 
Applied K 

Farmer 
Practice 

K Rich 
Strip 

 0-15 cm 0-15 cm   Grain Yield 
 ppm ppm kg ha-1 kg ha-1 kg ha-1 kg ha-1 

4 7.2 191.5 0.0 134 2366 3196 
12 - 119 0.0 134 3679 4405 
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Table 12. Soil test results, application rate and grain yield for responsive location to the addition of K 
in 2012-2013 

Location 
Soil 

Test Cl- 

Soil 
Test 
Cl- 

STK 
Farmer 

Applied K 
K Strip 

Applied K 
Farmer 
Practice 

K Rich 
Strip 

 0-15 cm 
15-45 

cm 
0-15 cm   Grain Yield 

 ppm ppm ppm   kg ha-1 kg ha-1 

33 11.4 15.8 169.5 0.0 134 2384 3109 
  



 

Figure 1. Application of NPKS rich s
University, containing four dry fertilizer boxes that held individual fertilizer connected to three  
polyvinyl chloride tubes attached to a 12 m boom. Fertilizer boxes were fed by two drive wheels as
PTO controlled fan forced fertilizer through the polyvinyl tubing to a reflection plate where it was 
evenly dispersed throughout a 1.8 m strip parallel to one another.
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FIGURES 
 

 

. Application of NPKS rich strips with an applicator built by engineers at Oklahoma State 
University, containing four dry fertilizer boxes that held individual fertilizer connected to three  

attached to a 12 m boom. Fertilizer boxes were fed by two drive wheels as
PTO controlled fan forced fertilizer through the polyvinyl tubing to a reflection plate where it was 
evenly dispersed throughout a 1.8 m strip parallel to one another. 

 

with an applicator built by engineers at Oklahoma State 
University, containing four dry fertilizer boxes that held individual fertilizer connected to three  

attached to a 12 m boom. Fertilizer boxes were fed by two drive wheels as a 
PTO controlled fan forced fertilizer through the polyvinyl tubing to a reflection plate where it was 



 

Figure 2. 42 locations where NPKS rich strips were applied throughout Oklahoma during winter 
wheat production in 2011-2012. Yellow pins represent a single location.
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where NPKS rich strips were applied throughout Oklahoma during winter 
2012. Yellow pins represent a single location. 

 

 

where NPKS rich strips were applied throughout Oklahoma during winter 



 

Figure 3. 40 locations where NPKS rich strips were applied throughout Oklahoma durin
wheat production in 2012-2013
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where NPKS rich strips were applied throughout Oklahoma durin
2013. Yellow pins represent a single location. 

 

 

where NPKS rich strips were applied throughout Oklahoma during winter 
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Figure 4. Visual height difference at maturity to the addition of N at site 43, located in Woods Co. 
west of Alva, OK in 2012-2013 



 

Figure 5. Visual height and color 
located in Grant Co. north of 
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and color difference during vegetative growth to the addition of P
of Lamont, OK in 2011-2012 

 
during vegetative growth to the addition of P at site 20, 
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APPENDICES 
 

 

Table 13. Geographic locations for 2011-2012 harvested NPKS sites 

Location Latitude Longitude 

1 34°17’30.64”N 98°27’7.82”W 

2 34°23’32.44”N 98°59’57.72”W 

3 34°29’59.86”N 99°7’55.29”W 

4 34°41’47.31”N 99°10’29.89”W 

5 34°38’16.66”N 99°28’2.12”W 

6 35°9’35.38”N 99°14’43.34”W 

7 35°19’33.38”N 97°56’24.33”W 

8 35°29’8.27”N 98°27’55.21”W 

9 35°33’58.37”N 98°46’42.92”W 

10 36°15’39.44”N 97°26’6.11”W 

11 36°16’9.12”N 97°25’33.87”W 

12 36°22’37.83”N 97°18’44.68”W 

13 35°51’17.64”N 97°42’38.21”W 

14 36°27’52.99”N 97°4’59.61”W 

15 36°27’52.86”N 97°4’40.45”W 

16 36°24’22.72”N 97°17’36.64”W 

17 36°23’34.59”N 97°57’16.84”W 

18 36°23’34.63”N 97°57’21.23”W 

19 36°17’27.65”N 97°53’53.90”W 

20 36°45’59.74”N 97°33’32.26”W 

21 36°44’26.61”N 97°33’5.27”W 

22 36°44’16.33”N 97°33’29.74”W 

23 36°41’17.25”N 97°38’37.86”W 

24 36°34’46.76”N 98°31’55.56”W 

25 36°18’18.94”N 98°30’37.74”W 

26 36°13’54.78”N 98°24’33.38”W 

27 36°13’54.37”N 98°24’48.03”W 

28 36°11’19.60”N 98°26’55.16”W 

29 36°34’11.24”N 98°35’8.78”W 

30 36°8’44.11”N 97°17’42.32”W 
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Table 14. Initial surface (0-15 cm) and subsurface (15-45 cm) soil analysis for 2011-2012 harvested locations, pH 
- 1:1 soil: deionized water, NO3

- - 2 M KCl extract, STP and STK – Mehilich-3 extraction, SO4
- - 0.008 M 

Calcium Phosphate 

Location depth pH NO3- STP STK SO4- 

 cm  ppm ppm ppm ppm 

1 
0-15 6.2 6.0 9.5 176.0 10.7 
15-45 4.8 8.0 147.5 168.5 8.1 

2 
0-15 8.2 9.5 14.5 359.0 6.1 
15-45 8.0 9.0 6.0 264.5 6.9 

3 
0-15 6.5 3.0 29.0 235.5 4.4 
15-45 6.5 3.0 13.5 204.0 5.1 

4 
0-15 5.1 8.5 91.5 191.5 5.9 
15-45 4.9 6.0 60.5 199.5 17.3 

6 
0-15 6.5 7.0 25.5 161.0 6.2 
15-45 7.3 32.5 8.0 170.5 8.6 

7 
0-15 5.2 12.5 35.5 122.0 10.6 
15-45 5.3 16.5 14.5 109.5 13.3 

8 
0-15 4.8 24.0 39.5 235.5 11.9 
15-45 5.2 15.0 14.5 165.0 11.4 

9 
0-15 6.2 9.0 27.0 187.0 10.0 
15-45 6.7 51.5 16.0 162.0 10.6 

10 
0-15 5.7 20.5 36.5 165.0 13.5 
15-45 7.4 12.0 6.0 184.5 8.0 

11 
0-15 5.9 13.5 28.5 185.5 11.0 
15-45 6.5 15.5 7.5 171.0 11.5 

12 
0-15 4.9 38.0 20.5 119.0 14.5 
15-45 5.7 16.5 7.5 132.0 11.0 

13 
0-15 6.9 16.0 19.0 259.0 8.5 
15-45 7.4 11.5 11.5 194.5 7.0 

14 
0-15 6.9 5.5 16.0 142.5 14.0 
15-45 8.0 3.0 3.0 168.5 47.5 

15 
0-15 5.5 22.0 21.0 135.5 21.5 
15-45 7.0 11.5 7.0 144.0 21.0 

16 
0-15 6.1 29.0 38.5 190.5 10.0 
15-45 7.2 23.0 12.5 175.0 8.0 

17 
0-15 6.2 7.5 30.5 312.5 8.5 
15-45 6.8 7.5 9.5 213.0 8.0 

18 
0-15 4.8 14.0 50.0 219.0 14.5 
15-45 6.0 18.0 10.5 186.5 8.5 

19 
0-15 5.5 6.0 25.5 157.0 22.0 
15-45 6.7 7.0 7.5 153.0 10.0 

20 
0-15 4.5 40.5 19.0 141.0 14.5 
15-45 5.2 32.0 9.0 126.5 9.5 

21 
0-15 4.7 30.0 17.0 161.0 10.3 
15-45 5.7 19.5 7.0 119.5 10.0 

22 
0-15 4.8 23.0 57.5 221.0 13.2 
15-45 5.1 19.0 20.0 169.5 11.1 

23 
0-15 6.2 36.5 29.0 231.5 10.0 
15-45 6.8 21.0 12.5 207.0 8.4 

24 
0-15 6.8 4.5 66.0 151.0 31.0 
15-45 6.8 8.0 20.0 119.0 19.0 

25 
0-15 5.8 56.0 72.0 300.0 15.5 
15-45 6.3 31.5 20.5 235.5 10.7 

26 
0-15 5.8 39.5 84.0 293.0 13.0 
15-45 6.2 11.0 20.0 278.0 10.7 

27 
0-15 5.8 28.0 52.0 256.5 10.4 
15-45 6.0 9.0 26.0 205.0 8.3 

28 
0-15 6.7 11.0 13.0 422.0 19.9 
15-45      

29 
0-15 5.4 24.5 33.0 290.5 8.7 
15-45 6.0 10.0 19.0 225.5 7.3 

30 
0-15 5.3 4.0 60.0 145.0 27.5 
15-45 6.3 2.0 15.0 132.0 9.0 

  



65 

 

Table 15. Grain yield (kg ha-1) for all treatments throughout 2011-2012 harvested location 

Location 
N Rich 

Strip Yield 
P Rich 

Strip Yield 
K Rich 

Strip Yield 

S Rich 
Strip 
Yield 

Farmer 
Practice 
Yield 

1 4059* 3334 3126 3869 3213 
2 2574 2971 2867 3299 2246 
3 2626 2591 2902 2349 2487 
4 2591 2539 3196* 2297 2366 
5 1416 1693 1555 1382 1365 
6 2487 2902 3196 2522 2729 
7 1520 2988 2643 2228 2366 
8 3696* 3506 3075 3023 2677 
9 2004 2263 2505 2159 2418 
10 2867 3057 3489 3144 2919 
11 2988 2902 2729 2850 2556 
12 4094 4681* 4405* 3904 3679 
13 2712 3990* 2816 2712 2971 
14 4197* 2885 2366 3040 2781 
15 4042 2936 3956 4042 3265 
16 5251 4698 5406 4336 5320 
17 2436 3489 2988 2919 3299 
18 3800 3731 3109 3696 3472 
19 4819 3610 3610 3506 3973 
20 2988 4301* 2176 2729 2833 
21 2816 3731 2885 3109 3161 
22 3265 3956 1710 1727 3731 
23 4543 4923 4733 3593 3990 
24 3783* 3921* 3455 3437 2436 
25 4474 5009 5666 4526 4664 
26 3144 3092 4128 3800 3990 
27 2850 3541 3714 3334 3230 
28 3886 4405 3973 4284 4042 
29 1745 1624 1779 1969 1641 
30 2936* 1900 2090 1555 1589 

* indicates significance at 0.05 significance level, respectively 
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Table 16. Straw biomass weight (kg ha-1) for all treatments and harvested locations in 2011-2012 

Location N Rich Strip 
P Rich 
Strip 

K Rich 
Strip 

S Rich 
Strip 

Farmer 
Practice 

1 6091 4519 4716 5879 4489 
2 5033 4368 3839 4942 2993 
3 5124 4852 4534 4156 4353 
4 5547 4368 5381 4640 4398 
5 3008 3083 2524 2811 2418 
6 5758 6665 5758 7678* 5365 
7 9325* 7104 6937 6862 7209 
8 8343 8328 6937 7617 7119 
9 5622 5622 6348 6363 6182 
10 6091 5743 6242 6439 5668 
11 6136 6091 6015 6151 6076 
12 7013 7013 6847 6529 6182 
13 5456 6680 4716 5003 4549 
14 5592* 4081 3537 3930 3899 
15 5547 4141 5577 5622 4095 
16 6711 6182 6302 5245 5924 
17 6423 5411 5229 6076 6559 
18 6378 6212 5124 6212 5425 
19 6015 3884 4035 3824 4700 
20 4821 6318* 3506 3930 4035 
21 4610 5864 4171 4519 4322 
22 5804 5879 3522 3733 5849 
23 6454 6635 6076 4972 5667 
24 5637* 5381* 4519* 4761* 3219 
25 8071 7693 9114 8736 8554 
26 6514 7481 8554 7104 7587 
27 6560 8192 7693 7481 6967 
28 6862 5985 5517 5940 6302 
29 3899 3068 3612 3597 3370 
30 4852* 2947 3008 2040 2282 

* indicates significance at 0.05 significance level, respectively 
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Table 17. Grain nutrient concentration for all treatments and harvested locations in 2011-2012 

 N Rich Strip P Rich Strip K Rich Strip S Rich Strip Farmer Practice 
Location %N %P %K %S %N %P %K %S %N %P %K %S %N %P %K %S %N %P %K %S 

1 2.1* 0.45 0.63 0.14* 1.7 0.39 0.47 0.12 1.7 0.38 0.48 0.12 1.7 0.40 0.50 0.12 1.8 0.43 0.53 0.13 
2 2.5* 0.36 0.58 0.14 1.9 0.41 0.58 0.13 1.9 0.43 0.61 0.14 1.9 0.41 0.57 0.13 1.8 0.36 0.54 0.13 
3 3.0* 0.47 0.74 0.18 2.5 0.47 0.61 0.17 2.6 0.46 0.61 0.16 2.4 0.42 0.58 0.17 2.6 0.45 0.66 0.17 
4 2.8 0.46 0.65 0.16 2.7 0.47 0.68 0.16 2.8 0.48 0.75 0.16 2.9* 0.44 0.65 0.19* 2.5 0.46 0.62 0.16 
5 3.3 0.36 0.51 0.19 3.0 0.43 0.64 0.18 2.8 0.34 0.56 0.18 3.1 0.35 0.60 0.19 3.2 0.40 0.66 0.19 
6 3.0 0.51 0.66 0.19 2.5 0.48 0.61 0.17 2.4 0.49 0.69 0.15 2.4 0.43 0.58 0.17 2.6 0.47 0.63 0.17 
7 2.3 0.39 0.57 0.16 2.2 0.47 0.70 0.15 2.3 0.44 0.75 0.16 2.3 0.41 0.69 0.17* 2.4 0.44 0.75 0.16 
8 2.4 0.37 0.67 0.16 2.3 0.40 0.59 0.16 2.3 0.43 0.75 0.15 2.2 0.36 0.60 0.14 2.3 0.38 0.62 0.17 
9 3.4* 0.45 0.68 0.20 3.0 0.43 0.58 0.19 3.1 0.43 0.62 0.20 3.3 0.48* 0.67 0.23* 3.0 0.40 0.56 0.20 
10 2.1 0.37 0.56 0.14 1.8 0.38 0.54 0.13 1.9 0.37 0.55 0.13 2.1 0.33 0.54 0.15 2.0 0.34 0.53 0.13 
11 2.1 0.41 0.61 0.14 2.1 0.40 0.58 0.14 2.1 0.42 0.61 0.14 2.0 0.42 0.63 0.15 2.1 0.42 0.60 0.14 
12 2.0 0.39 0.55 0.14 1.9 0.46* 0.61 0.13 1.9 0.37 0.50 0.13 1.8 0.36 0.52 0.12 2.0 0.36 0.49 0.13 
13 2.3 0.36 0.63 0.16 2.3 0.45 0.74 0.16 2.2 0.35 0.60 0.16 2.4 0.36 0.72 0.17 2.1 0.38 0.62 0.16 
14 2.3 0.34 0.43 0.16* 1.8 0.44 0.54 0.14 1.8 0.43 0.52 0.13 1.8 0.45 0.55 0.14 1.9 0.41 0.51 0.14 
15 2.1 0.33 0.47 0.17 1.8 0.37 0.47 0.12 1.8 0.36 0.49 0.13 1.9 0.36 0.49 0.14 2.3 0.37 0.51 0.16 
16 1.9 0.45 0.68 0.14* 1.8 0.38 0.56 0.12 1.7 0.40 0.63 0.11 1.6 0.40 0.60 0.11 1.7 0.41 0.58 0.11 
17 2.6* 0.42 0.57 0.15 2.1 0.44 0.51 0.13 2.2 0.44 0.53 0.14 2.2 0.42 0.54 0.15 2.2 0.46 0.57 0.15 
18 2.2 0.36 0.53 0.16 2.1 0.43 0.53 0.15 2.3 0.33 0.47 0.15 2.1 0.36 0.48 0.15 2.3 0.39 0.56 0.16 
19 2.0 0.39 0.59 0.15 1.7 0.44* 0.55 0.12 1.6 0.40 0.54 0.12 1.8 0.39 0.55 0.13 1.9 0.36 0.53 0.13 
20 2.6 0.26 0.36 0.15 2.2 0.33* 0.44 0.14 2.7 0.26 0.37 0.17 2.6 0.26 0.36 0.17 2.7 0.23 0.33 0.16 
21 2.5 0.26 0.39 0.16* 2.1 0.39* 0.51* 0.13 2.3 0.28 0.40 0.14 2.2 0.27 0.39 0.14 2.2 0.28 0.40 0.14 
22 2.5* 0.33 0.44 0.16 2.1 0.40 0.49 0.15 2.5* 0.37 0.45 0.17* 2.5 0.37 0.46 0.18* 2.2 0.39 0.48 0.15 
23 2.2* 0.45 0.50 0.14* 1.8 0.47 0.53 0.12 1.7 0.39 0.48 0.12 1.9 0.42 0.49 0.13 1.7 0.41 0.48 0.12 
24 2.2* 0.35 0.54 0.17* 1.6 0.38 0.57 0.14 1.6 0.35 0.53 0.12 1.7 0.31 0.49 0.14 1.6 0.36 0.48 0.13 
25 2.7* 0.48 0.56 0.17* 2.4 0.53 0.61 0.16 2.5 0.49 0.58 0.17 2.4 0.43 0.48 0.16 2.4 0.48 0.55 0.16 
26 2.5 0.45 0.63 0.18 2.1 0.47 0.63 0.15 2.1 0.44 0.62 0.15 2.3 0.48 0.69 0.17 2.2 0.45 0.62 0.17 
27 2.5 0.42 0.65 0.17 2.2 0.47 0.64 0.15 2.3 0.44 0.64 0.16 2.3 0.40 0.62 0.16 2.4 0.41 0.63 0.17 
28 2.8* 0.45 0.61 0.19* 1.8 0.48 0.55 0.14 2.0 0.46 0.60 0.15 1.7 0.39 0.48 0.13 2.1 0.51 0.61 0.15 
29 2.4* 0.36 0.57 0.16 1.9 0.41 0.57 0.14 2.0 0.37 0.54 0.14 1.9 0.36 0.50 0.14 2.1 0.38 0.58 0.15 
30 1.9 0.42 0.52 0.13 2.0 0.40 0.48 0.14 2.0 0.43 0.50 0.13 2.0 0.45 0.53 0.15 2.0 0.40 0.48 0.14 

* indicates significance at 0.05 significance level, respectively
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Table 18. Grain nutrient removal (kg ha-1) from the addition of N, P, K and S at all harvested locations in 2011-2012 

 N Rich Strip P Rich Strip K Rich Strip S Rich Strip Farmer Practice 

Location N P K S N P K S N P K S N P K S N P K S 

1 74.5* 16* 22.2* 5.1* 48.3 11.4 13.6 3.5 46.1 10.3 13.0 3.2 56.3 13.5 17.0 4.1 50.9 12.1 14.8 3.5 

2 56.6 8.1 13.1 3.0 50.3 10.8 14.9 3.5 47.6 10.7 15.4 3.4 53.5 11.7 16.5 3.8 35.1 7.1 10.5 2.5 

3 69.8 10.9 17.0 4.2 55.6 10.7 13.8 3.8 64.8 11.6 15.6 4.1 50.0 8.5 12.0 3.5 56.8 9.7 14.3 3.7 

4 63.2 10.5 14.7 3.6 59.6 10.4 15.0 3.6 77.9* 13.5* 21.0* 4.5* 58.7 8.8 13.1 3.7 52 9.6 12.9 3.2 

5 41.2 4.4 6.4 2.4 43.9 6.4 9.5 2.6 38.5 4.6 7.6 2.4 37.5 4.2 7.2 2.2 38.0 4.8 7.9 2.3 

6 64.3 11.1 14.3 4.1 64.7 12.2 15.5 4.2 68.3 13.6 19.2 4.3 52.2 9.6 12.8 3.7 62.0 11.2 15.1 4.1 

7 31.1 5.1 7.6 2.1 56.2 12.4* 18.3 4.0 53.7 10.2 17.3 3.6 45.4 8.0 13.4 3.2 49.5 9.0 15.5 3.2 

8 77.1* 12.0 21.7 5.2 71.0 12.4 18.2 4.8 61.2 11.6 20.1 4.2 58.7 9.6 15.8 3.8 53.9 9.0 14.6 4.0 

9 60.2 7.9 11.9 3.6 59.8 8.6 11.5 3.8 67.5 9.5 13.7 4.3 62.7 9.0 12.7 4.3 63.3 8.5 11.8 4.3 

10 51.6 9.2 13.9 3.5 48.2 10.2 14.3 3.4 59.2 11.3 16.7 3.9 59.1 9.1 14.8 4.0 51.5 8.8 13.4 3.4 

11 55.2 10.6 15.9 3.7 52.1 10.3 14.8 3.6 50.0 10.0 14.6 3.3 50.7 10.4 15.6 3.7 46.7 9.4 13.5 3.2 

12 72.7 14.0 19.8 4.9 77.5 18.9* 24.9* 5.4 73.0 14.2 19.2 4.8 60.3 12.4 17.7 4.2 62.9 11.5 15.9 4.1 

13 54.4 8.4 15.0 3.8 79.1 15.6 25.7 5.5 53.6 8.7 14.8 3.8 55.9 8.4 17.1 4.0 53.5 10.0 16.0 4.0 

14 82.7* 12.4 15.7 6.0* 44.7 11.1 13.7 3.4 37.7 8.9 10.8 2.8 47.6 11.9 14.7 3.7 47.2 10.1 12.3 3.3 

15 73.8 11.8 16.6 6.1 46.8 9.6 12.1 3.1 62.2 12.5 17.1 4.3 67.3 12.6 17.3 5.0 64.5 10.5 14.6 4.6 

16 89.4 20.6 31.3 6.2* 74.5 15.8 23.1 5.0 79.7 18.9 29.7 5.1 62.5 15.1 22.6 4.2 79.2 19.1 27.1 5.2 

17 55.8 9.0 12.2 3.3 63.2 13.5 15.5 4.1 57.7 11.4 13.8 3.6 55.5 10.6 13.9 3.7 62.6 13.3 16.4 4.3 

18 73.1 11.9 17.8 5.2 68.5 14.1 17.2 4.9 63.8 8.9 12.8 4.2 68.1 11.6 15.7 4.9 70.2 11.9 17.0 4.8 

19 85.9 16.4 24.9 6.1 52.6 13.9 17.3 3.8 52.0 12.5 16.9 3.7 54.2 11.9 17.0 4.0 64.5 12.3 18.4 4.5 

20 67.2 6.8 9.4 4.0 82.4 12.3* 16.6* 5.3* 51.8 5.0 7.1 3.2 61.1 6.2 8.6 4.0 66.6 5.7 8.2 4.0 

21 61.6 6.4 9.6 3.9 68.3 12.6* 16.8* 4.2 58.6 7.0 10.1 3.6 59.3 7.4 10.6 3.7 61.6 7.8 10.9 3.8 

22 71.6 9.6 12.5 4.5 71.3 13.9 16.8 5.1 37.3 5.5 6.7 2.5 37.1 5.6 6.9 2.7 73.3 12.8 15.6 5.0 

23 86.2* 17.9 19.8 5.7 76.2 20.0* 22.7 5.2 72.0 16.3 19.6 4.8 59.1 13.1 15.4 4.0 60.6 14.4 16.8 4.1 

24 73.2* 11.4 18.0* 5.7* 56.4* 13.0* 19.7* 4.9* 49.8 10.5 16.0* 3.7 49.7 9.3 14.8 4.2 34.7 7.7 10.1 2.8 

25 105.7 18.8 22.0 6.8 106.3 23.1 26.7 6.9 125.9* 24.3 28.6 8.2* 97.0 16.8 19.0 6.4 99.0 19.6 22.3 6.5 

26 67.7 12.3 17.3 4.9 58.2 12.7 17.1 4.1 75.8 15.9 22.4 5.3 77.0 15.9 22.9 5.5 76.0 15.9 21.6 5.8 

27 62.6 10.6 16.2 4.2 68.2 14.7 19.9 4.7 74.0 14.4 20.8 5.0 67.4 11.7 18.0 4.8 68.3 11.7 17.8 4.7 

28 94.7 15.2 20.8 6.4 71.3 18.3 21.3 5.2 71.3 16.1 20.8 5.1 64.6 14.6 18.1 4.7 74.2 18.0 21.4 5.4 

29 36.6 5.6 8.7 2.5 26.7 5.7 8.0 2.0 31.9 5.7 8.3 2.1 32.8 6.1 8.6 2.4 30.3 5.4 7.9 2.1 

30 49.8 10.7 13.3 3.4 34.0 6.7 8.0 2.2 36.1 7.9 9.1 2.4 27.7 6.1 7.2 1.8 27.6 5.6 6.6 1.9 

* indicates significance at 0.05 significance level, respectively
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Table 19. Geographic locations for 2012-2013 harvested NPKS sites 

Location Latitude Longitude 

31 34°15’29.92”N 98°40’42.97”W 

32 35°23’37.54”N 98°58’34.55”W 

33 35°33’58.62”N 98°46’47.72”W 

34 35°19’33.24”N 97°56’26.45”W 

35 35°3’50.77”N 97°28’33.54”W 

36 35°51’23.56”N 97°46’4.24”W 

37 36°18’15.46”N 97°4’11.94”W 

38 36°19’5.97”N 97°23’8.62”W 

39 36°20’21.99”N 97°24’30.00”W 

40 36°18’30.77”N 97°56’39.14”W 

41 36°19’4.76”N 97°54’8.22”W 

42 36°17’22.67”N 97°53’52.29”W 

43 36°47’52.39”N 98°44’54.10”W 

44 36°41’58.24”N 98°40’0.60”W 

45 36°42’34.06”N 98°33’32.83”W 

46 36°37’24.19”N 98°31’23.28”W 

47 36°37’21.14”n 98°29’24.05”W 

48 36°21’54.12”N 98°37’36.26”W 

49 36°21’44.52”N 98°38’54.35”W 

50 36°12’18.99”N 98°39’19.48”W 

51 36°32’10.53”N 96°56’28.10”W 

52 36°19’6.90”N 96°52’58.45”W 

53 36°43’3.68”N 97°27’43.16”W 

54 36°42’31.18’N 97°34’11.12”W 

55 36°45’58.91”N 97°33’35.36”W 

56 36°45’59.18”N 97°33’26.73”W 

57 36°31’46.94”N 97°23’22.65”W 

58 35°27’27.72”N 97°5’10.39”W 

59 35°25’11.65”N 97°3’36.46”W 
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Table 20. Initial surface (0-15 cm) and subsurface (15-45 cm) soil analysis for 2012-2013 harvested locations, 
pH - 1:1 soil: deionized water, NO3

- - 2 M KCl extract, STP and STK – Mehilich-3 extraction, SO4
- - 0.008 M 

Calcium Phosphate 

Location depth pH NO3- STP STK SO4- Cl- 

 cm  ppm ppm ppm ppm ppm 

31 
0-15 5.4 24.0 29.5 157.5 8.5 24.2 
15-45       

32 
0-15 8.0 8.5 12.5 224.5 7.0 18.2 
15-45 8.1 8.5 3.5 221.5 7.5 16.4 

33 
0-15 7.6 12.0 18.0 169.5 6.0 11.4 
15-45 7.9 19.5 4.5 132.5 28.5 15.8 

34 
0-15 6.2 5.5. 23.5 145.5 11.5 11.8 
15-45 5.6 12.0 15.0 109.5 11.5 33.9 

35 
0-15 7.6 1.5 19.5 93.5 3.0 6.6 
15-45 8.1 1.5 7.0 79.5 2.5 13.6 

36 
0-15 6.0 34.5 30.5 344.0 11.0 14.8 
15-45 7.2 4.0 7.0 293.0 7.0 10.1 

37 
0-15 6.6 53.5 33.5 138.5 14.5 45.7 
15-45 6.8 20.5 8.5 146.5 52.5 20.7 

38 
0-15 6.5 68.5 136.5 136.5 33.0 24.0 
15-30 6.5 8.0 35.0 100.0 10.0 17.5 

39 
0-15 5.3 47.0 68.0 236.5 21.5 13.9 
15-30 6.0 13.5 16.5 211.0 27.0 10.5 

40 
0-15 5.7 43.0 58.5 213.5 12.5 11.4 
15-30 5.6 17.0 10.5 136.5 12.0 15.7 

41 
0-15 4.5 43.0 34.0 153.0 17.0 22.7 
15-30 5.5 18.0 22.0 143.5 11.5 10.7 

42 
0-15 5.2 67.0 27.0 178.5 13.0 19.2 
15-45       

43 
0-15 6.3 6.0 23.5 309.5 8.5 12.9 
15-45 6.8 9.0 8.5 298.5 8.5 15.6 

44 
0-15 6.3 67.0 34.0 252.5 10.0 10.4 
15-45 6.6 37.5 11.5 177.5 7.0 10.1 

45 
0-15 5.4 48.5 78.5 301.5 19.0 24.2 
15-45 6.3 26.0 23.5 231.0 13.5 17.6 

46 
0-15 5.0 46.0 64.0 359.5 11.0 12.8 
15-45 4.9 33.0 67.0 259.5 11.0 10.6 

47 
0-15 5.4 24.0 68.0 434.5 10.5 17.5 
15-45 5.6 33.5 55.5 342.0 14.5 24.0 

48 
0-15 5.3 40.0 37.5 184.5 12.5 11.3 
15-45 6.3 29.5 11.0 119.5 6.5 10.0 

49 
0-15 6.2 45.5 56.0 272.5 21.5 17.5 
15-45 7.1 26.5 11.0 184.0 17.0 31.9 

50 
0-15 7.6 25.0 24.5 102.0 19.0 59.9 
15-45 6.6 7.5 20.0 67.5 16.0 21.5 

51 
0-15 8.2 2.0 63.0 68.5 8.0 66.7 
15-45 7.5 2.0 22.5 54.0 9.5 72.8 

52 
0-15 5.7 22.0 17.0 159.5 12.0 22.0 
15-45       

53 
0-15 5.1 21.5 26.0 99.5 9.5 21.2 
15-30 6.1 9.0 10.5 138.0 7.5 13.8 

54 
0-15 4.9 15.0 20.0 193.0 12.0 11.2 
15-30 6.0 8.0 9.5 169.0 25.0 14.7 

55 
0-15 4.6 21.5 17.0 159.5 16.5 9.5 
15-30 6.6 9.5 3.5 205.5 8.5 10.0 

56 
0-15 4.4 16.0 26.0 168.5 16.0 8.6 
15-30 5.3 12.5 11.5 152.5 16.5 10.3 

57 
0-15 6.2 16.0 13.5 203.0 17.0 21.0 
15-30 6.5 10.5 5.0 182.5 17.0 19.9 

58 
0-15 6.5 7.0 62.5 436.0 13.0 13.9 
15-45 7.4 13.5 12.5 414.0 10.0 15.2 

59 
0-15 6.3 19.0 150.0 374.0 9.0 13.4 
15-45 6.7 24.5 149.5 283.0 10.0 17.7 
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Table 21. Grain yield (kg ha-1) for all treatments throughout 2012-2013 harvested location 

Location 
N Rich 
Strip 
Yield 

P Rich 
Strip 
Yield 

K Rich 
Strip 
Yield 

S Rich 
Strip 
Yield 

Farmer 
Practice 
Yield 

31 285 324 415 453 389 
32 1710 2138* 1827 2099 1671 
33 2358 2772 3109* 2332 2384 
34 4055 3861 4158 3886 3912 
35 3679 4120 4262 4392 3718 
36 1904 2021 2280 1606 2060 
37 4171 3938 4405 4223 3977 
38 4275* 2941 2785 3018 3083 
39 4573 5428 4120 4456 4314 
40 4677 4521 4534 4936 4418 
41 5480 4936 5247 4690 5130 
42 3666 4288 3394 3394 3537 
43 5428* 3796 3485 3485 2954 
44 3355 3109 2876 2474 2941 
45 3796 3278 3899 3006 3588 
46 1529 1257 2461 2526 2138 
47 1529 1788 2047 1878 2112 
48 3446 2733 3226 3563 3861 
49 1930 1671 2021 2397 2682 
50 2526 2928 2811 2552 2513 
51 4469 3666 4638 4171 4314 
52 1801 2021 1762 1529 1503 
53 3886 3511 3550 3679 3951 
54 3213 3899 3511 3187 2746 
55 1568 2980* 1775 1671 1801 
56 2708 3278* 2474 2695 2138 
57 2189 1762 1684 1606 1827 
58 4638 2967 3161 3342 5389 
59 3601 5519 4754 4690 4664 

* indicates significance at 0.05 significance level, respectively 
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Table 22. Straw biomass weight (kg ha-1) for all treatments and harvested locations in 2012-2013 

Location N Rich Strip 
P Rich 
Strip 

K Rich 
Strip 

S Rich 
Strip 

Farmer 
Practice 

31 6382* 5996 3752 5532 3990 
32 6314* 6212* 3775 4761 4477 
33 6166* 6688* 4988 5430 4818 
34 7855 6847 5872 7209 6926 
35 6892 6484 6427 6813 5804 
36 6246 5316 4716 4092 4840 
37 7187 7323 7164 7062 6246 
38 7719* 4829 4251 4863 4874 
39 8536 8241 6745 7368 7459 
40 9023* 7005 7425 7821 7017 
41 7765* 6370 6529 6541 6257 
42 6937 7107 5634 5974 6507 
43 9658* 6246 5033 5203 4840 
44 8184 7515 6677 6484 7085 
45 8876 7674 8263 6994 7765 
46 8592 7470 8139 8229 6495 
47 7651* 4795 5112 5203 5656 
48 6110 4659 5339 5305 4852 
49 6869 5747 4863 6189 6563 
50 6336 6597 5849 5679 5622 
51 6869 5736 6484 6960 6166 
52 4092 4217 3911 3616 3582 
53 6325 5668 5362 5770 5928 
54 5611 7368* 6450* 6405* 4115 
55 6132* 7051* 4205 4852 4239 
56 3877 5747* 3253 4262* 3151 
57 5350* 4126 3095 3786 3491 
58 11970* 11845* 8615 10531 9567 
59 9839 10168 10156 11233 10020 

* indicates significance at 0.05 significance level, respectively 
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Table 23. Grain nutrient concentration for all treatments and harvested locations in 2012-2013 

 N Rich Strip P Rich Strip K Rich Strip S Rich Strip Farmer Practice 
Location %N %P %K %S %N %P %K %S %N %P %K %S %N %P %K %S %N %P %K %S 

31 3.41 0.37 0.61 0.19 3.42 0.43 0.63 0.19 3.44 0.43 0.58 0.19 3.42 0.42 0.57 0.19 3.43 0.41 0.53 0.19 
32 2.98* 0.35 0.52 0.18 2.49 0.39* 0.55 0.16 2.25 0.34 0.54 0.15 2.19 0.33 0.54 0.15 2.60 0.32 0.53 0.17 
33 2.89 0.35 0.54 0.17 2.55 0.42* 0.63 0.16 2.68 0.30 0.54 0.17 2.69 0.27 0.49 0.18 2.67 0.28 0.55 0.17 
34 2.54 0.40 0.52 0.17 1.94 0.44 0.55 0.15 2.15 0.37 0.54 0.15 2.27 0.41 0.56 0.17 2.21 0.41 0.55 0.16 
35 2.69* 0.45 0.61 0.17 2.05 0.46 0.53 0.14 2.40 0.45 0.58 0.16 2.27 0.43 0.58 0.16 2.10 0.40 0.52 0.15 
36 2.53* 0.45 0.82* 0.17* 2.13 0.46 0.69 0.15 2.10 0.47 0.67 0.14 2.08 0.43 0.64 0.15 2.13 0.47 0.70 0.15 
37 2.79 0.47 0.69 0.18 2.59 0.50 0.68 0.18 2.58 0.48 0.72 0.18 2.56 0.45 0.68 0.19 2.63 0.48 0.78 0.19 
38 2.37* 0.53 0.71 0.15* 2.00 0.53 0.60 0.13 2.03 0.54 0.62 0.13 1.95 0.53 0.62 0.13 1.97 0.53 0.63 0.13 
39 2.54 0.45 0.58 0.16 2.29 0.55 0.66 0.16 2.43 0.47 0.61 0.16 2.58 0.50 0.62 0.18 2.45 0.48 0.61 0.16 
40 2.85 0.50 0.68 0.18 2.48 0.52 0.61 0.16 2.63 0.49 0.63 0.17 2.57 0.49 0.62 0.16 2.58 0.49 0.63 0.16 
41 2.69 0.38 0.58 0.17 2.45 0.47* 0.64* 0.16 2.55 0.43 0.60 0.17 2.51 0.39 0.58 0.17 2.54 0.40 0.54 0.17 
42 2.66 0.34 0.66 0.17 2.30 0.42* 0.66 0.15 2.50 0.32 0.59 0.16 2.46 0.34 0.66 0.17 2.52 0.33 0.63 0.17 
43 2.10* 0.39 0.64* 0.14* 1.52 0.36 0.50 0.11 1.55 0.31 0.48 0.11 1.63 0.32 0.52 0.12 1.68 0.34 0.52 0.12 
44 2.70 0.39 0.56 0.16 2.68 0.45 0.62 0.16 2.69 0.42 0.67 0.16 2.73 0.42 0.64 0.17 2.81 0.39 0.57 0.16 
45 3.25 0.47 0.82 0.19 2.68 0.54 0.77 0.18 2.63 0.52 0.84 0.19 2.60 0.51 0.82 0.19 2.71 0.48 0.84 0.18 
46 2.66* 0.46 0.79 0.18* 2.52 0.47 0.87 0.18 2.41 0.50 0.84 0.17 2.29 0.46 0.78 0.17 2.43 0.46 0.81 0.17 
47 2.60 0.47 0.83 0.17 1.96 0.47 0.71 0.14 2.08 0.42 0.65 0.13 2.08 0.40 0.63 0.14 2.26 0.44 0.70 0.15 
48 2.78 0.40 0.49 0.18 2.60 0.47* 0.53 0.17 2.65 0.43 0.53 0.17 2.48 0.39 0.53 0.17 2.51 0.38 0.53 0.17 
49 2.96* 0.50 0.71 0.20* 2.60 0.46 0.55 0.18 2.64 0.48 0.63 0.19 2.64 0.50 0.69 0.18 2.40 0.44 0.60 0.17 
50 2.55 0.41 0.66 0.18 2.42 0.50 0.73 0.17 2.48 0.45 0.70 0.17 2.51 0.46 0.69 0.18 2.62 0.48 0.75 0.19 
51 1.96 0.47 0.51 0.12 2.02 0.49 0.51 0.13 1.86 0.47 0.48 0.12 1.88 0.46 0.48 0.12 1.80 0.45 0.47 0.12 
52 2.85* 0.40 0.56 0.20* 2.35 0.45 0.62 0.17 2.59 0.43 0.64 0.19 2.51 0.44 0.62 0.19 2.56 0.43 0.59 0.18 
53 2.70 0.39 0.48 0.18 2.37 0.45* 0.52* 0.16 2.37 0.38 0.47 0.16 2.49 0.38 0.47 0.17 2.38 0.37 0.44 0.16 
54 2.42* 0.29 0.39 0.17* 2.58* 0.44* 0.48* 0.15 2.51* 0.38 0.44 0.15 2.44* 0.40 0.44 0.15 2.16 0.38 0.42 0.14 
55 2.69 0.28 0.38 0.16 2.42 0.42* 0.48 0.16 2.59 0.32 0.43 0.16 2.51 0.28 0.40 0.17* 2.54 0.31 0.43 0.16 
56 2.88* 0.32 0.42 0.17 2.34 0.38 0.48 0.16 2.70 0.33 0.43 0.17 2.57 0.35 0.46 0.18 2.70 0.33 0.43 0.16 
57 2.20 0.35 0.43 0.15 1.91 0.40 0.44 0.12 2.17 0.38 0.46 0.14 2.07 0.39 0.48 0.14 1.92 0.39 0.46 0.14 
58 2.82 0.54 0.59 0.19* 2.59 0.50 0.58 0.18* 2.28 0.49 0.55 0.15 2.39 0.51 0.59 0.17 2.31 0.50 0.54 0.16 
59 2.98 0.54 0.53 0.18 2.23 0.50 0.49 0.16 2.54 0.49 0.46 0.17 2.56 0.51 0.48 0.17 2.74 0.58 0.58 0.18 

* indicates significance at 0.05 significance level, respectively
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Table 24. Grain nutrient removal (kg ha-1) from the addition of N, P, K and S at all harvested locations in 2012-2013 

 N Rich Strip P Rich Strip K Rich Strip S Rich Strip Farmer Practice 

Location N P K S N P K S N P K S N P K S N P K S 

31 8.5 0.9 1.5 0.5 9.7 1.2 1.8 0.5 12.5 1.6 2.1 0.7 13.6 1.7 2.3 0.7 11.7 1.4 1.8 0.6 

32 44.6 5.2 7.8 2.7 46.6 7.3* 10.4 3.1 35.9 5.5 8.7 2.4 40.3 6.1 9.9 2.8 38.1 4.7 7.8 2.5 

33 59.7 7.2 11.2 3.5 61.8 10.3* 15.3 4.0 73.0* 8.1 14.8 4.6* 55.0 5.6 10.1 3.6 55.7 5.8 11.4 3.5 

34 90.2 14.4 18.6 6.1 65.5 15.0 18.7 4.9 78.1 13.6 19.8 5.4 77.1 14.0 18.9 5.8 75.7 14.0 18.8 5.5 

35 86.6 14.5 19.7 5.3 73.7 16.5 19.1 5.1 89.6* 16.7 21.7* 6.0* 87.1 16.4 22.3* 6.2* 68.4 12.9 17.1 4.7 

36 42.1 7.6 13.7 2.8 37.6 8.1 12.3 2.6 41.9 9.3 13.4 2.8 29.2 6.0 8.9 2.1 38.4 8.4 12.7 2.6 

37 101.7 17.3 25.3 6.7 89.1 17.1 23.3 6.1 99.4 18.6 27.9 7.1 94.8 16.5 25.2 6.8 91.7 16.7 27.0 6.5 

38 88.7* 19.9* 26.5* 5.7* 51.6 13.6 15.5 3.3 49.5 13.1 15.2 3.2 51.6 14.1 16.4 3.4 53.1 14.3 16.9 3.5 

39 101.6 18.0 23.4 6.6 108.5 25.9 31.5 7.5 87.6 17.1 21.8 5.8 100.5 19.6 24.4 7.1 92.5 18.0 23.1 6.2 

40 116.6* 20.3 27.8 7.3 97.9 20.5 24.3 6.3 104.2 19.3 24.8 6.6 111.0 21.0 26.6 7.0 99.8 19.0 24.4 6.4 

41 128.9* 18.2 27.8 8.0 105.6 20.3 27.7 7.1 117.3 19.7 27.7 7.6 102.8 16.0 23.7 7.2 113.8 17.8 24.4 7.5 

42 85.4 10.8 21.1 5.5 86.5 15.6* 24.8 5.7 74.2 9.4 17.6 4.8 73.0 10.0 19.5 5.1 77.8 10.3 19.4 5.2 

43 99.8* 18.3* 30.4* 6.7* 50.5 11.9 16.7 3.6 47.4 9.5 14.7 3.3 49.8 9.9 15.7 3.6 43.3 8.7 13.5 3.1 

44 79.2 11.4 16.4 4.8 72.9 12.1 16.8 4.5 67.6 10.6 16.8 4.1 59.1 9.0 13.9 3.7 72.4 10.2 14.7 4.2 

45 107.8* 15.7 27.1 6.1 77.0 15.4 22.1 5.1 89.6 17.7 28.8 6.5 68.3 13.3 21.6 4.9 85.0 15.1 26.2 5.6 

46 35.6 6.1 10.6 2.4 27.7 5.1 9.5 1.9 51.9 10.7 18.1 3.6 50.5 10.1 17.3 3.8 45.5 8.5 15.2 3.1 

47 34.8 6.3 11.1 2.2 30.7 7.4 11.1 2.2 37.2 7.4 11.7 2.4 34.2 6.6 10.3 2.4 41.7 8.1 12.9 2.7 

48 83.8 12.2 14.8 5.4 62.1 11.2 12.6 4.0 74.7 12.2 15.0 4.8 77.4 12.3 16.5 5.2 84.9 12.7 17.8 5.6 

49 50.0 8.5 12.0 3.4 38.0 6.7 8.1 2.7 46.6 8.5 11.1 3.3 55.3 10.4 14.6 3.8 56.4 10.4 14.0 3.9 

50 56.5 9.0 14.5 3.9 62.1 12.8 18.8 4.3 61.0 11.0 17.3 4.2 56.1 10.4 15.5 4.0 57.5 10.6 16.6 4.1 

51 76.8 18.4 20.0 4.8 64.7 15.6 16.5 4.1 75.4 19.2 19.7 5.0 68.6 16.9 17.7 4.5 67.9 17.1 17.8 4.4 

52 44.9 6.3 8.8 3.1 41.6 8.0* 10.9 3.0 39.9 6.7 9.8 2.9 33.6 5.9 8.3 2.5 33.6 5.6 7.8 2.4 

53 91.7 13.4 16.2 6.1 72.8 14.0 15.9 4.9 73.7 11.9 14.7 5.1 80.0 12.3 15.2 5.6 82.3 12.9 15.3 5.5 

54 68.1 8.1 10.9 4.8 88.0* 14.9* 16.5* 5.2* 77.1 11.7 13.6 4.7 67.9 11.1 12.3 4.0 52.0 9.1 10.0 3.4 

55 36.9 3.8 5.2 2.2 63.1* 10.9* 12.6* 4.1* 40.2 5.0 6.7 2.5 36.7 4.2 5.9 2.5 40.0 4.9 6.8 2.5 

56 68.2 7.7 10.0 4.0 67.1 11.0* 13.6* 4.5 58.5 7.2 9.3 3.6 60.6 8.2 10.7 4.3 50.4 6.2 8.0 3.0 

57 42.2 6.6 8.2 2.9 29.5 6.1 6.8 1.9 32.0 5.6 6.8 2.0 29.1 5.5 6.7 2.0 30.7 6.2 7.4 2.2 

58 114.4 21.9 23.8 7.7 67.1 13.1 15.2 4.6 63.0 13.5 15.3 4.1 69.9 14.9 17.3 5.0 108.9 23.4 25.6 7.5 

59 93.9 16.9 16.8 5.7 107.6 24.1 23.8 7.5 105.6 20.4 19.3 7.0 105.2 20.7 19.5 7.0 111.9 23.5 23.6 7.4 

* indicates significance at 0.05 significance level, respectively 
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