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There is a great emphasis on corn grain and silage 
production because of New York’s large dairy industry, 
ranked fourth in milk production in the United States 

(National Agricultural Statistics Service, 2015). Corn takes 
up a signifi cant amount of nitrogen (N) and in soils contain-
ing insuffi  cient plant-available N, N addition with fertilizer is 
needed. Typically in NY, N fertilizer is split-applied between 
a low rate of starter fertilizer applied at planting followed by 
side-dressing when the corn is at the V6-V8 growth stage, just 
prior to the rapid growth phase of the corn plants. Th e split N 
application reduces the risk of N loss and increases N use effi  -
ciency (Kanwar et al., 1988; Th ompson et al., 2015; Walsh et 
al., 2012; Ma et al., 2005).

During the last decades the development of proximal sen-
sors and variable rate application equipment made it possible 
to perform mid-season corrections of N defi ciencies. Variable 
rate applications allow farmers to manage fi eld variability and 
to reduce spatial variation in end-of-season yield (Stone et al., 
1996). Crop sensing can aid in identifi cation of areas within 
fi elds that require additional N for optimal crop yield and 
quality, allowing for variable and more precise rate applica-
tions (Stone et al., 1996; Lukina et al., 2001; Raun et al., 2002; 
Tubaña et al., 2008), enhancing N use effi  ciency. Th e active 
proximal sensors emit their own light and measure the refl ec-
tance of specifi c spectra of light, typically in the visible (VIS; 
green, red, or red-edge) and the near-infrared (NIR), from 
the plant canopy providing a wide range of vegetation indices 
such as the NDVI ([NIR–VIS]/[NIR+VIS]) (Rouse et al., 
1973) and the inverse simple ratio (ISR; [VIS/NIR]) (Gong 
et al., 2003). Th e advantage of the active sensors is that their 
measurements are not compromised by cloudiness and they can 
be mounted on N fertilizer applicators making them ideal for 
on-the-go variable rate N applications (Shanahan et al., 2008).

Th e fi rst step in the development of an algorithm for variable 
rate N applications using proximal sensing is the development 
of an equation to estimate end-of-season yield from mid-season 
spectral canopy measurements (Moges et al., 2007). Th e accu-
racy of yield predictions from sensor data is impacted by the 
timing of sensing (growth stage) (Raun et al., 2005a), and the 
way sensor data are interpreted. Th e NDVI is the most widely 
used index for deriving yield estimates (Hatfi eld et al., 2008) 
but other indices have also been used. For example, Kitchen 

In-Season	Estimation	of	Corn	Yield	Potential	Using	Proximal	Sensing

Aristotelis	C.	Tagarakis	and	Quirine	M.	Ketterings*

Published in Agron. J. 109:1323–1330 (2017)
doi:10.2134/agronj2016.12.0732
Available freely online through the author-supported open access option

Copyright © 2017 American Society of Agronomy
5585 Guilford Road, Madison, WI 53711 USA
Th is is an open access article distributed under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

ABSTRACT
Crop sensing is a promising approach for predicting corn (Zea 
mays L.) yield. Yield prediction is the fi rst step in development 
of algorithms for sensor-based N management. Here, we evalu-
ated the impact of (i) timing of sensing (growth stage), and (ii) 
method of reporting sensor data on estimations of corn grain 
and silage yield in New York. Sensor data were reported as the 
normalized diff erence vegetation index (NDVI), in-season 
estimated yield (INSEY) expressed as NDVI divided by days 
aft er planting (DAP; INSEYDAP), growing degree days (GGD; 
INSEYGGD), and the inverse simple ratio (ISR; [1–NDVI]/
[1+NDVI]) divided by DAP (INSEYISR). To evaluate timing 
of sensing, corn of six fertility trials was scanned at every growth 
stage between V4 and V11. Th e replicated trials had up to six 
N rates (0, 56, 112, 168, 224, and 336 kg ha–1). Th e V7 sensor 
and yield data from zero-N plots of nine additional on-farm tri-
als (varying histories) were added to derive yield algorithms for 
New York. Drought at three sites in 2016 negatively impacted 
the accuracy of sensor-based grain yield estimates (R2 < 0.27). 
Excluding these sites, most accurate yield predictions were 
obtained from V6 onward. Across diff erent locations and inde-
pendent of reporting method, INSEY data at V7 predicted yield 
with an R2 > 0.70 (grain) and >0.77 (silage). We conclude that 
INSEY data obtained at V7 can be used to accurately predict 
corn grain and silage yields in non-drought conditions in New York.
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Core Ideas
•	 Accurate yield prediction is needed for eff ective sensor-based N 

management.
•	 Field testing is needed to develop reliable algorithms for silage 

and grain corn.
•	 For the most accurate yield prediction, crop sensing should be 

done at V6 or later.
•	 Predictions for corn silage were more accurate than for corn grain.
•	 Th e use of in-season-estimated yield is preferred across variable sites.
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et al. (2010) used the inverse simple ratio (ISR = [1–NDVI]/
[1+NDVI]) instead of NDVI.

Improvements in the use of vegetation indices for yield 
estimation have been suggested in past years, including some 
assessment of the growing season since planting. Raun et al. 
(2001) introduced the “estimated yield (EY)” as the average 
NDVI acquired in two post dormancy dates divided by the 
cumulative growing degree days (GDD) for the period from 
sensing Day 1 to Day 2. This index integrated the early season 
growing conditions and growth rate in the computation of EY 
for wheat (Triticum aestivum L.) grown for grain. A simplified 
INSEY was suggested by Raun et al. (2002) as NDVI divided 
by the days after planting (DAP) for days with GDD > 0. Teal 
et al. (2006) developed models to predict corn grain yield based 
on NDVI, INSEYGDD, and INSEYDAP with similarly good 
results (R2 ranged from 0.73–0.77). However, the INSEY 
approach normalized NDVI measurements across time and 
various environmental conditions (Teal et al., 2006), account-
ing for the growing conditions from planting to sensing and 
providing an estimate of the N uptake per day (Lukina et al., 
2001) and the biomass produced per day (Raun et al., 2005b). 
As such, INSEY could be particularly useful when combining 
data from different site-years.

Over the last few decades proximal sensing and variable rate 
application technology have been successfully used to predict 
end-of-season yield and the probability of N responsiveness in 
grain crops including small grains (Stone et al., 1996; Lukina 
et al., 2001; Raun et al., 2002) and corn (Tubaña et al., 2008). 
Limited studies have been conducted for the use of crop sensors 
for yield prediction and the development of an algorithm for N 
management of silage crops. One exception is a recent calibra-
tion study by Tagarakis et al. (2017) on the use of crop sensor 
data for predicting yield of forage sorghum (Sorghum bicolor 
L.) in New York. With a growing interest among New York 
farmers in precision agriculture, the importance of corn silage 
and grain in the state, and the large diversity in soil types and 
field fertility histories (with and without manure), field studies 
are needed to evaluate use of early or mid-season proximal sens-
ing for predicting yield and N responsiveness of corn grown for 
grain production and corn harvested as silage.

The overall objective in this study was to evaluate the use and 
performance of proximal sensing for estimating end-of-season 
yield of grain and silage corn. The specific objectives were to 
evaluate the impact of (i) timing of sensing (growth stage), and 
(ii) method of reporting of sensor data on estimations of corn 
grain and silage yield in New York. Sensor data were reported 
as NDVI, INSEYDAP, INSEYGGD, and INSEYISR.

MATERIALS AND METHODS
Field Experiments

Timing of Sensing

Field trials to determine the best timing of sensing (hereafter 
referred to as “timing of sensing trials”) were conducted on 
research stations at three locations (Varna, NY, 42.461° N, 
76.436° W; Ketola, NY, 42.471° N, 76.438° W; and Aurora, 
NY, 42.725° N, 76.659° W) in 2015 and 2016. The soil type 
in Varna is a Hudson silt loam (a fine, illitic, mesic Glossaquic 
Hapludalf) and Collamer silt loam (a fine-silty, mixed, semi-
active, mesic Glossaquic Hapludalf), in Ketola is a Langford 
channery silt loam (a fine-loamy, mixed, active, mesic Typic 
Fragiudept) while in Aurora it is Lima silt loam (a fine-loamy, 
mixed, semiactive, mesic Oxyaquic Hapludalf). Fields without 
recent manure history were selected to ensure crop response to 
N; yield differences were needed to test the ability of crop sens-
ing to predict yield accurately.

A range of N rates was applied at planting to create ranges 
in NDVI and yield. In all trials a randomized complete block 
design was replicated four times to evaluate sensor measure-
ment with growth stage. Five N rates were tested (0, 56, 112, 
168, 224 kg of N ha–1) with the exception of the trial at Aurora 
in 2016 where an additional treatment (336 kg of N ha–1) 
was added. All trials were planted with a drought tolerant 
corn hybrid 3316AM (Doebler’s, Williamsport, PA) with a 
93 d comparative relative maturity. Planting was done in May 
in both years with actual dates ranging from 10 to 29 May, 
depending on weather conditions at the various locations 
(Table 1).

The plots were 30 m long and 3 m wide with four rows 
per plot. A John Deere 450 grain drill (Deere and Company, 
Moline, IL) was used to plant corn at 0.76 m row widths 
and 0.15 m distance between plants within the row (popula-
tion stand of 87,850 plants ha–1). The N fertilizer (Agrotain 
treated urea, Koch Agronomic Services LLC., Wichita, KS) 
was applied directly after planting using a 3-m drop spreader 
(Gandy Company, Owatonna, MN).

A GreenSeeker 505 Handheld Sensor (NTech Industries, 
Ukiah, CA) was used to measure the canopy reflectance from 
the corn plants at the two middle rows in each plot. The sen-
sor was coupled with a NOMAD 900 Handheld Computer 
(Trimble Ltd., Sunnyvale, CA) to geo-reference, log, and save 
the NDVI measurements. The trials were scanned eight times 
during the growing season at each growth stage starting at V4 
until V11 (Table 1).

The plots were split lengthwise; half of each plot was 
harvested for silage when the plant dry matter content was 

Table	1.	Planting,	harvest	and	crop	sensing	dates	for	the	timing	of	sensing	field	trials	with	corn	in	2015	and	2016.

Year Location Planting
Harvest Crop	sensing

Silage Grain V4 V5 V6 V7 V8 V9 V10 V11
2015 Aurora 29	May 24	Sept. 4	Nov. 24	June 29	June 10	July 14	July 17	July 21	July 24	July 30	July
2015 Varna 15	May 21	Sept. 22	Oct. 10	June 15	June 20	June 23	June 26	June 30	June 7	July 10	July
2015 Ketola 15	May 21	Sept. 26	Oct. 10	June 15	June 23	June 26	June 30	June 7	July 10	July 14	July
2016 Aurora 10	May 2	Sept. 5	Oct. 10	June 15	June 24	June 27	June 6	July 9	July 11	July 14	July
2016 Varna 12	May 2	Sept. 6	Oct. 6	June 13	June 20	June 23	June 1	July 5	July 8	July 12	July
2016 Ketola 12	May 6	Sept. 14	Oct. 17	June 20	June 27	June 1	July 8	July 12	July 15	July 18	July
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approximately 350 g kg–1 while the rest was harvested for grain 
when the dry matter content approached 850 g kg–1. The har-
vest area was 18.3 m2 (1.5 by 12.2 m; two adjacent rows in the 
middle of the plots containing 75 plants on average). During 
silage harvest (in September, Table 1) the plants were chopped 
at 0.2 m aboveground, weighed in the field, and subsampled for 
dry matter content. For the grain harvest (in October, Table 1) 
ears were collected and weighed. The number of ears was also 
recorded. A sample of 20 ears from each plot was shelled and 
wet and dry weights of the cobs and grain were obtained.

Precipitation in 2015 was in the normal ranges for the corn 
growing season with regular precipitation events from planting 
until harvest. In 2016, trials faced severe drought from planting 
until tasseling showing only a few insignificant precipitation 
events (Fig. 1).

Additional Yield Estimation
Nine on-farm trials were conducted in 2014 and 2015 in 

northern and western New York as part of a statewide study 
to evaluate impact of sidedress N application on yield of 
corn grown for silage or for grain. Trials were planted with a 
small starter N application, ranging from 15 to 34 kg N ha–1 
(Table 2). Each trial included a zero-N sidedress treatment, in 
addition to five sidedress N rates. Plot width varied between 18 
and 27 m depending on the harvester and fertilizer applicator 
size at each farm, so that each plot contained at least three even 
passes with the harvester and one or two complete passes with 
the fertilizer applicator. The length varied between 100 and 
160 m according to the size and shape of each field. In 2014, 
crop sensing took place using GreenSeeker sensors (NTech 
Industries, Ukiah, CA) installed on sprayer booms used for the 
N sidedress application. The NDVI of the plots that did not 
receive any sidedress N was recorded at the V7 growth stage 
providing the average NDVI of the sprayer length. In 2015 the 

GreenSeeker 505 Handheld Sensor was used in all fields to 
measure the NDVI from three individual passes within each 
plot. The sensor was coupled with a NOMAD 900 Handheld 
Computer (Trimble Ltd., Sunnyvale, CA) to geo-reference, log, 
and save the NDVI measurements. The measurement fre-
quency was set to 1 Hz. The sensor and yield data from the zero 
N plots were combined with the data from the “time of sensing 
trials” to develop yield potential equations.

Trials were harvested using each farm’s combine harvester 
(for the trials grown for grain) or forage harvester (for the trials 
grown for silage) equipped with yield monitors. Yield datasets 
were cleaned by removing the points where the harvesters were 
slowing down, accelerating or stopping, and the points with 
abnormal moisture content.

Data Analysis

The data from the timing of sensing trials were analyzed 
for each individual timing using regression analysis in SPSS 
Statistics (SPSS Inc., Chicago, IL). Regression analysis was 
used to model final yield (independent variable) using NDVI, 
INSEYDAP, INSEYGDD, and INSEYISR as dependent vari-
ables. The coefficient of determination (R2), the root mean 
square error (RMSE), and the variability of the NDVI mea-
surements expressed as coefficient of variation (CV), were used as 
the criteria to determine the best timing to scan with the sensor.

To derive models for yield predictions with crop sensing at 
V7, the data from the timing of sensing trials were combined 
with the data from the nine on-farm trials. The R2 and the 
RMSE were used as the criteria to determine which of the 
independent variables, NDVI, INSEYDAP, INSEYGDD, and 
INSEYISR, provided the most reliable estimation of end-of-sea-
son silage and grain yield. Both exponential and power models 
were tested using regression analysis in SPSS Statistics (SPSS 
Inc., Chicago, IL).

Fig.	1.	Precipitation	during	the	corn	growing	season	in	Varna,	Ketola,	and	Aurora,	NY,	in	2016.
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Table	2.	Location,	soil	type,	soil	fertility	and	amount	of	starter	fertilizer	(kg	of	N	ha–1)	applied	in	nine	on-farm	trials	in	2014	and	2015.

Year Soil	type
Soil	fertility

Starter	NpH OM† P‡ K‡ Mg‡
g kg–1 ————————-	mg	kg–1———————— kg ha–1

2014 Lima	silt	loam 6.8 24 5.3	(H) 104	(VH) 193	(VH) 15
2014 Lima	silt	loam/Honeoye	loam 6.7 24 5.6	(H) 101	(VH) 173	(VH) 15
2014 Lima/Cazenovia	silt	loam 6.5 31 5.7	(H) 111	(VH) 235	(VH) 34
2015 Appleton	silt	loam 6.2 21 12.0	(H) 145	(VH) 139	(VH) 26
2015 Ontario/Hilton	loam 6.8 13 10.5	(H) 101	(VH) 206	(VH) 31
2015 Windsor	loamy	fine	sand 5.2 24 19.1	(H) 160	(VH) 57	(H) 34
2015 Galway	loam 6.8 38 36.1	(VH) 190	(VH) 106	(VH) 34
2015 Hudson/Rhinebeck	silt	loam 6.4 35 9.4	(H) 121	(VH) 270	(VH) 34
2015 Rhinebeck	silt	loam 6.3 34 4.1	(M) 104	(VH) 255	(VH) 34

†	OM,	organic	matter.
‡	Morgan	extractable	P,	K,	and	Mg	(Morgan,	1941).	M	=	medium;	H	=	high;	VH	=	very	high.	Interpretations	according	to	Cornell	Cooperative	
Extension	(2016).

Fig.	2.	Relationships	between	final	yield	of	(a)	grain	and	(b)	silage	corn	and	in	season	estimated	yield	(INSEY)	calculated	using	days	after	
planting	(DAP)	and	normalized	difference	vegetation	index	(NDVI)	(INSEYDAP	=	NDVI/DAP),	for	trials	conducted	in	Varna,	Ketola,	and	
Aurora,	NY,	with	NDVI	measured	at	eight	dates	in	2015	(V4–V11	growth	stages)	using	the	GreenSeeker	505	Handheld	Sensor.
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RESULTS AND DISCUSSION
The 2015 timing of sensing trials were responsive to N fer-

tilization. In 2016, the severe drought in spring and summer 
(Fig. 1) affected yield and N responsiveness. The response indices, 
defined by Johnson et al. (2000) as the yield in the highest N 
treatment divided by the yield in the control (zero-N) treatment, 
were 2.0, 2.5, and 1.4 for the Aurora, Ketola, and Varna sites in 
2015, vs. 1.3, 1.1, and 1.2 in 2016. Weed control failed due to the 
lack of rain at the Aurora site resulting in higher NDVI values 
than in Varna and Ketola. Due to the weed control issues, this 
site was excluded from further analysis, consistent with Raun et 
al. (2005b) who suggested that a model to predict end-of-season 
yield should be fitted to yields that were not affected by adverse 
conditions from sensing to maturity. Corn silage yields of the 
other two sites were consistent with the NDVI measurements, 
reflecting that when rainfall occurred after mid-July the corn had 

already entered the reproductive stage. Therefore, data analyses 
included the 2016 Varna and Ketola trials for the silage yield 
predictions. Corn grain yield partially recovered during the 
grain-filling stages assisted by rainfall after mid-July. This caused 
the NDVI data to underpredict grain yield. Therefore grain 
yield from these two locations was excluded from the combined 
analyses. The data from the on-farm trials were not included in 
the analysis for the timing of sensing as at these trials canopy 
reflectance was measured only once (at V7).

Timing of Sensing for Grain Corn

Exponential models gave the best fit to the sensor data con-
sistent with findings of previous studies for grain corn (Raun 
et al., 2005b; Teal et al., 2006), wheat (Lukina et al., 2001; 
Raun et al., 2005b), and forage sorghum (Tagarakis et al., 
2017). Scans before the V6 growth stage showed low correla-
tion to end-of-season yield independent of reporting sensor 
measurements as NDVI or INSEY (R2 < 0.55; Fig. 2a, Table 3). 
The R2 increased as crop growth progressed resulting in a 
maximum value at V7 growth stage (R2 ranged between 0.65 
and 0.78). This is a growth stage earlier than previous stud-
ies which showed high potential to estimate grain corn yield 
potential from NDVI measurements at V8 (Teal et al., 2006). 
The RMSE was minimized at V7 indicating that this was the 
growth stage providing the best prediction of end-of-season 
yield, consistent with R2 results (Table 3).

Raun et al. (2005a) suggested that the best time for sensing 
and to apply in-season N fertilizer was when the variability of 
the NDVI measurements was maximized stating that treating 
crops at maximum variability is expected to have the great-
est impact. Measurement variability can be expressed as CV 
in NDVI values. In our study, such NDVI variability was 
low initially (CV = 12.8% at V2), showed a maximum at V6 

Fig.	3.	Relationship	between	the	growth	stages	and	normalized	
difference	vegetation	index	(NDVI)	measurement	variability	of	
corn	expressed	as	percentage	of	coefficient	of	variation	(CV%).

Fig.	4.	Relationships	between	final	yield	of	(a)	grain	and	(b)	silage	corn	and	normalized	difference	vegetation	index	(NDVI),	in	season	
estimated	yield	(INSEY)	calculated	using	the	days	after	planting	(DAP)	(INSEYDAP	=	NDVI/DAP),	in	season	estimated	yield	(INSEY)	
calculated	using	the	growing	degree	days	(GDD)	(INSEYGDD	=	NDVI/GDD),	and	in	season	estimated	yield	(INSEY)	calculated	dividing	the	
inverse	simple	ratio	(ISR)	index	by	the	growing	degree	days	(INSEYISR	=	ISR/GDD).
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(CV = 26.8%), and gradually decreased and leveled off after 
V10 (CV = 5.6%) (Fig. 3). This result is consistent with the 
study from Raun et al. (2005a) in corn who concluded that the 
CV of the NDVI measurements was maximized at V6.

In our work, yield estimations of grain corn were unreliable 
with scans done prior to V6. The earliest scan that provided 
acceptable yield predictions across the 4 site-years was at V6 
(R2 > 0.66). Predictions providing good estimate of yield were 
also achieved in later measurements but after V8 the variability 
of the NDVI, expressed as CV, was significantly lower indicat-
ing that the sensor became less efficient in capturing the differ-
ences among plants with high and low yields later in the season, 
and in-field corrections (N addition) would be difficult to do 
because of the progressed growth of the plants.

Timing of Sensing for Silage Corn

The best fit to the silage data was achieved using exponen-
tial models as well (Fig. 2b, Table 3). Scans at the V4 growth 
stage showed good potential to predict end-of-season yield 
from NDVI, INSEYDAP, INSEYGDD, and INSEYISR (R2 > 
0.63) but after V5 the R2 increased to reach a maximum at V6 
and V7 (R2 > 0.85) followed by a small decrease for the later 
growth stages. The RMSE at V4 was the highest among all 
growth stages while lowest at V6 and V7 suggesting that sens-
ing at V6–V7 gives the most accurate predictions of silage yield 
(Table 3). Use of a crop sensor after V9 is not recommended for 
silage corn either; the CV of the NDVI measurements decreased 
significantly, and, as mentioned earlier, the corrective N application 
would be expected to have limited impact (Raun et al., 2005a).

Yield Prediction Models with Sensing at V7

For corn grain, the INSEY-based equations provided more 
reliable estimations of final yield (R2 0.72– 0.78) than the raw 
NDVI measurements (R2 = 0.56) (Fig. 4a). For corn silage, 
both NDVI and INSEY provided good relationships with 
silage yield (Fig. 4b). However, it is recommended to use one 
of the INSEY equations for yield prediction from mid-season 
sensor measurements across a larger diversity of fields, as these 
equations adjust the sensor measurements to the specific grow-
ing conditions of each field from planting until sensing.

CONCLUSIONS
Sensing timing greatly impacts the accuracy of yield predic-

tions. For grain corn V6 was the earliest growth stage that 
provided good relationships between sensor measurements 
and yield but predictions were more accurate (higher R2 and 
lower RMSE) for V7. Later sensing resulted in reduced abil-
ity to differentiate plants with different yield potentials. The 
INSEY models fit the data better than the NDVI based model. 
For silage corn, the NDVI based model performed slightly 
better than the INSEY based models but also for the INSEY 
based models the R2 was 0.77 or higher. Sensing at V6 and V7 
resulted in the highest R2 and lowest RMSE suggesting that 
crop sensing for corn silage yield predictions might be done one 
growth stage earlier than sensing for grain yield predictions. 
The data from the 2016 trials showed that drought can impact 
the accuracy of yield predictions based on mid-season crop 
scans. We conclude that crop sensing is a promising technology 
for determining end-of-season yields of both grain and silage 

corn. However, timing of scanning needs to be standardized to 
develop algorithms that can cover a larger region, and scanning 
in severe drought years will result in less accurate estimates.
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