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Value of Composite NDVI and GDD Data in Oklahoma, 1999 to 2018 

Core Ideas 

1. Grain yield prediction was improved using mathematically reproducible ranges in 

GDD>0 compared to a historical, and subjective, morphological scale 

2. A climatologically identifiable metric that precisely determined when to collect sensor 

readings in future years 

3. New yield prediction using exponential function justifies the adoption of a new YP0 

equation for OSU’s on-line Sensor Based Nitrogen Rate Calculator 

Value of Composite NDVI and GDD Data in Oklahoma, 1999 to 2018 

Bruno Figueiredo, Jagmandeep Dhillon*, Elizabeth Eickhoff, Eva Nambi, and William Raun 

Department of Plant and Soil Sciences. Oklahoma State University 

ABSTRACT 

For over twenty-five years, sensor-based NDVI data has been collected from both 

satellite imagery and near-plant (3 m) readings. Because calibrated NDVI data coming from 

active sensors is still relatively new, limited research has returned to evaluate databases that 

included multiple years and environments. Composite Normalized Difference Vegetative 

Index (NDVI) sensor readings and final grain yield were collected from 1999 to 2018. This 

included growing degree day (GDD) records for each mid-season sensor measurement.   This 

was attempted to potentially improve the use of a historical and subjective morphological 

scale (Feekes, Large, 1954).  Using location-specific-archived-data from the Oklahoma 
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Mesonet, the exact number of days from planting to sensing where growing degree days were 

more than zero (GDD>0) for each date and location were compiled.  The ensuing relationship 

between NDVI (for a predetermined GDD>0 range) and yield was determined.  Grain yield 

prediction was improved between 80 and 115 GDD’s. These ranges further targeted a 

climatologically identifiable metric that precisely determined when to collect sensor readings 

in future years. Compared to the current composite yield prediction equation for Oklahoma, 

the new exponential function created from this study was higher in the lower-yielding 

environments. Underestimation of fertilizer N rates has been voiced by producers in recent 

years.  This has likely been the product of more current varieties, more efficient farming 

practices, and increased optimum N rates needed for higher yields.  This validates the 

adoption of a new YP0 equation for OSU’s on-line Sensor Based Nitrogen Rate Calculator, 

allowing accurate yield prediction between 80 to 115 GDD’s. 

 

INTRODUCTION 

Absolute knowledge of how solar radiation interacts with plant matter and vegetation 

is required to interpret and use remote sensing data in agriculture (Knipling 1970).  Some of 

the first sensor data that computed the normalized difference vegetative index (NDVI) was 

obtained from passive sensors that were reported by Rouse et al. (1974).  Values for NDVI 

were calculated using near-infrared (NIR, 770 nm) and red (660 nm) wavelengths, and equal 

to (NIR-red)/NIR+red) (Stone et al., 1996). Sellers (1985) demonstrated that NDVI was 

directly related to photosynthetic capacity and in turn, serve as an indication of light 

absorption from plants.  

 This work that encompasses NDVI continues today using active sensors, instead of 

the passive sensors that required white-plate calibration (Ruiz-Garcia et al., 2009).  The 
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resultant NDVI formula is the same, but where constant adjustments for actual reflectance, 

required white plate readings that served as a reference for ambient light that changes 

throughout the day. 

 Early work by Benedetti and Rossini (1993) showed that National Oceanic and 

Atmospheric Administration (NOAA) satellite NDVI data could be used to predict plant 

photosynthetic capacity and efficiency. They further reported on the usefulness and 

affordability of real-time crop monitoring that was made possible using this index. 

Furthermore, they developed a linear model for estimating wheat yield forecast using NDVI 

integration during the wheat grain filling period. Quarmby et al. (1993) recommended added 

input from an agrometeorological model in addition to NDVI to better predict yield. Work by 

Meek and Hatfield (1994) noted the importance of automated meteorological stations that 

have become commonplace in many sectors of the agricultural landscape.  Nonetheless, they 

highlighted problems associated with quality control and data archival. Raun et al. (2001) 

showed that the use of growing degree days (GDD) combined with NDVI readings over 

many locations, assisted in refining estimates of grain yield.  Estimated grain yield levels 

were then used to refine in-season fertilizer N rates, based on that yield prediction level.  

One of the more robust weather station networks in the world is The Oklahoma 

Mesonet with 121 automated environmental monitoring stations across 77 counties in 

Oklahoma (Fiebrich et al., 2006).  For this network, environmental indices are measured 

using several instruments near a 10-meter-tall tower. Measurements are archived every 5 

minutes, and observations transmitted to a central facility every 5 minutes, 24 hours per day, 

year-round (www.mesonet.org).  Within this system, the Oklahoma Climatological Survey 

(OCS) receives observations, verifies data quality and offers data to the public free of charge. 

This includes air temperature, relative humidity, wind speed/direction, barometric pressure, 
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rainfall, incoming solar radiation, soil moisture at 5, 25, and 60 cm, and soil temperature 10 

cm below the surface (natural cover and bare surface).   

 The objective of this work was to compile multi-year, winter wheat grain yield data 

from several continuing experiments at Oklahoma State University, and to merge this 

information with archived climatological data. An additional objective was to further refine 

winter wheat grain yield prediction equations first established using NDVI by Aase and 

Siddoway (1981) and that have since been advanced by various researchers in winter wheat 

(Raun et al., 2001; Raun et al., 2002; Girma et al., 2006; Bushong et al., 2016) and maize ( 

Sharma and Franzen, 2014; Bushong et al., 2018; Sharma et al., 2018). 

MATERIALS AND METHODS 

 Winter wheat grain yield experiments were selected from a wide range of studies in 

Oklahoma that have been conducted since 1892. Both trials included a combination of N, P, 

and K rates, in randomized complete block experimental designs. All trials included in this 

work are reported in Table 1, as are the years included in this analysis where NDVI and 

wheat grain yield data were available.  Many years had multiple NDVI sensor readings taken 

from each plot but on different dates.  Soil classification for the sites included in this study is 

reported in Table 2.   

 Sensor NDVI readings were collected using an active Greenseeker 505 handheld 

sensor (Trimble.com Sunnyvale, CA).  The Greenseeker sensor measures normalized 

difference vegetative index (NDVI) by using a self-illuminated (active sensor) light source in 

the red and near-infrared (NIR) wavelengths (660 +/- 10nm) and (780 +/-10 nm), 

respectively. The Greenseeker sensor calculates NDVI using the following formula (NDVI = 

(ρ NIR- ρ red)/(ρ NIR+ ρ red), where ρ NIR represents the fraction of emitted NIR radiation 
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returned from the sensed area (reflectance), and ρ red represents the fraction of emitted red 

radiation from the sensed area (reflectance).  

 This sensor has an area of measurement of 1 cm x 60 cm when used in a normal 

operating range of 60 cm to 100 cm over the surface of the crop canopy.  More than ten 

readings are collected per second, and where information is stored in an onboard Personal 

Digital Assistant (PDA) control unit. 

 For all sensor readings and final harvest dates, the cumulative number of days from 

planting to sensing where Growing Degree Days (GDD) were more than zero were recorded 

from the Oklahoma Mesonet.  In order to count as one day where growth was possible, or 

where GDD>0, the following condition had to be met (((Tmin + Tmax)/2 – 4.4C) >0).   

 Data analysis focused on finding the highest coefficient of determination (r2) for 

NDVI readings and wheat grain yield, but where this was cataloged or partitioned by ranges 

in GDD>0.  Early sensor readings were not expected to provide improved correlation or 

improved prediction of wheat grain yield.  Nonetheless, these readings were needed to 

delineate the minimum GDD>0, when robust yield prediction was possible.  Similarly, later 

sensor readings, while usually better at predicting wheat grain yield, were used to identify 

dates when yield prediction no longer improved. These later dates were understandably 

beyond those times when fertilizer would be expected to be applied, but necessary to 

establish limits. 

 

RESULTS AND DISCUSSION 

 Consistent with the initial concept that is embedding climatic data within the 

parameters and limits for predicting yield, surface scatter plots at both locations were 
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evaluated (Figures 1, Experiments 222 and 502, respectively).  Greenseeker NDVI data 

collected at specific points in the season, aligned to the actual number of days from planting 

to sensing where GDD>0, showed that moving from right to left (lower X-axis, or NDVI), 

increasing NDVI increased yield.  This range or spread was widened as the number of days 

where GDD>0 increased from 80 to 115 (right Y-axis, bottom left to top right).  Nonetheless, 

a consistent increase in yield was seen for each incremental change in GDD>0, when the 

range was between 80 and 115, at both locations.  Moving from 80 to 115 GDD>0, the slope 

of NDVI versus yield increased, and that could, in turn, be embedded within the refined yield 

prediction equation, tied to the actual GDD>0 value.  In general, the steeper the increase in 

NDVI (by GDD), the higher the correlation was with the final grain yield (Figures 1).  Actual 

surface response models for Experiment 222 and Experiment 502 are reported in Figure 2.  

The same trends noted in the scatter plots were again repeated in the surface response models.  

As the GDD>0 increased, the separation in NDVI readings (range) increased, and the ability 

to detect differences in yield were enhanced. 

When Greenseeker NDVI data excluded values where GDD>0 was less than 80 and 

more than 115, yield prediction was improved. Within this range, as the GDD>0 increased, 

the slope of NDVI versus yield also increased. This was not entirely clear when plotting slope 

by GDD>0, for NDVI versus yield (Table 3). Dhillon et al. (2019), noted a precise yield 

potential prediction was between 97 and 112 GDD’s (GDD > 0).    

 Evaluation of the slope for the N rate versus the environment means is illustrated in 

Figure 3.  As the environment means increased, the slope of N rate versus yield did as well, 

and that was computed by year from 1999 to 2018.  What this indicates is that as yield 

increased, the demand for N also increased. Or in other words, yield level and N removal 

were related. Raun et al. (2011) and Dhital and Raun (2016) delineated the difference 



 

 

 
This article is protected by copyright. All rights reserved. 
 

between N removal and N response, where they found that yield potential was independent of 

actual N response over the years (environment). 

Finally, this work aimed to further refine wheat grain yield potential estimates using 

NDVI and the INSEY index that this group developed in the 1990s (Lukina et al., 2001).  

Estimates of YP0 employed an exponential function that had historically underestimated YP0 

at low levels of INSEY and overestimated YP0 when INSEY values were higher.  Consistent 

with observations of how yield goals have been determined by producers (average of the last 

five years + 20%) (Raun et al., 2017), our estimate of YP0 adds one standard deviation to the 

equation.  This takes into consideration the assumed avoidance of risk that producers choose 

to not be short on N.  For the past ten years, the following OK exponential function has been 

used (YP0=0.590*EXP(258.2*INSEY)  

Modifications with time have included data coming from Kansas.  For this paper, the 

added focus on Experiment 502 (Lahoma, OK) revealed a function that is expected to 

improve current understanding and adoption. 

The underestimation of YP0 has been suspected/common when yields were low.  Use 

of the Lahoma experiment station data for Oklahoma has been iconic over the years, and that 

better represented the potential for both higher yields and that reflected conditions in our state 

when yield potentials were expected to be lower.  The latter includes years when yields were 

lower due to late planting or limited moisture at planting.  In summary, trials at Lahoma have 

better reflected the ranges in yields that are encountered in this state.  As such this specific 

sensor data has been more elucidating concerning the whole concept of yield and yield 

potential. 
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Conclusions  

This work aimed to refine wheat grain yield potential estimates using NDVI and GDD 

from 1999 to 2018. Grain yield prediction was improved using mathematically reproducible 

ranges in GDD>0 compared to a historical, and subjective, morphological scale. The ensuing 

relationship between NDVI (for a predetermined GDD>0 range) targeted a climatologically 

identifiable metric that precisely determined when to collect sensor readings in future years. 

Compared to the current composite yield prediction equation for Oklahoma, the new 

exponential function created from this study was higher in the lower-yielding environments 

and further justifies the adoption of a new YP0 equation for OSU’s on-line Sensor Based 

Nitrogen Rate Calculator.  
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Table 1.  The experiment included in the analysis, year established annual average rainfall and 

range in annual rainfall. 

Experiment Longitude 

Latitude 

Year  

Started 

Annual Avg. 

rainfall 

Range Mean Annual 

Temperature 

 mm ºC 

222 36° 7’ 7” N 

97° 5’ 30” W 

1969 922 606-1493 15.0 

502 

 

36° 23’ 13” 

N 

98° 6’ 29” W 

1970 771 503-1314 15.6 
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Table 2.  Location, experiment, and soil classification for all sites included in this study, 

Oklahoma. 

Site Series Soil Classification 

Experiment 222 Kirkland silt loam Fine, mixed, thermic, Udertic, 

Paleustoll 

Experiment 502 Grant silt loam Fine, silty, mixed, superactive, 

thermic, Udic 

 

Table 3. Linear regression of INSEY on wheat grain yield, partitioned by ranges when 

sensor readings were collected (GDD>0). 

Location GDD Range Linear Model R
2
 PR>F, b1 ≠ 0 n 

Lahoma <70 y=1.73+27.19x 0.01 0.33 83 

Stillwater <70 y=0.31+128.3x 0.69 0.001 100 

Lahoma 70 to 90 y=1.84+202.5x 0.1 0.001 637 

Stillwater 70 to 90 y=1.38+109.1x 0.03 0.002 477 

Lahoma 90 to 110 y=-0.22+611x 0.38 0.001 615 

Stillwater 90 to 110 y=1.43+118.4x 0.04 0.001 781 

Lahoma >110 y=0.13+700.6x 0.47 0.001 448 

Stillwater >110 y=1.71+136.1x 0.04 0.001 488 
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Figure 1. Surface scatter plot of wheat grain yield in Mg ha
-1

 versus normalized difference vegetative 

index (NDVI) readings and categorized by the number of days from planting to sensing where 

growing degree days (GDD, 47 to 139) were more than zero (1999 to 2018), Experiment 222, 

Stillwater, OK (A), and Experiment 502, Lahoma, OK (B).   

(A) 

(B) 
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Figure 2. Surface response model delineating the relationship between NDVI and GDD>0 (47 to 139) 

with wheat grain yield (Mg ha
-1

), Experiment 222, Stillwater (A), and Experiment 502, Lahoma (B), 

OK, 1999-2018. 

  

(A) 

(B) 

Mgha = 0.39 - 0.055 GDD + 14.9 NDVI + 0.000252 GDD
2
  

+ 0.0212 NDVI*GDD – 14.2 NDVI
2
, R

2
=0.19 

Mgha = 3.35 - 0.03 GDD - 0.216NDVI 

- 0.000041 GDD
2
 + 0.086 NDVI*GDD 

– 3.55 NDVI
2, 

R
2
=0.34 
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Figure 3.  The relationship between the slope component from by-year linear regression of N 

rate versus environment yield, Experiment 502, Lahoma, OK, 1999-2018.   
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