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Abstract Remote sensing-based nitrogen (N) management has been evaluated in many

crops. The water background and wide range of varieties in rice (Oryza sativa), are unique

features that require additional consideration when using sensor technology. The com-

monly calculated normalized difference vegetation index is of limited use when the crop

has reached complete canopy closure. The objective of this research was to evaluate mid-

season agronomic parameter and grain yield prediction models along with the effect of

water background and of different varieties using a red- and red-edge-based vegetation

index. Varieties 9 N trials were established at the LSU AgCenter Rice Research Station

located in Crowley, Louisiana in 2011 and 2012. Canopy spectral reflectance under clear

and turbid water, biomass yield, N content, plant coverage, and water depth were collected

each week for three consecutive weeks beginning 2 weeks before panicle differentiation.

Grain yield was also determined. Water turbidity had an influence on spectral reflectance

when canopy coverage was less than 50 %. While water depth influenced red reflectance,

this was not carried over when reflectance was transformed to vegetation indices. The red-

edge-based vegetation indices, especially those computed by ratio, had stronger relation-

ships with measured agronomic parameters as compared with red-based indices. Further-

more, the effect of variety on the yield prediction model was observed using derivative-

based red-edge indices but not with other ratio-based indices. Future researches should
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focus on developing a generalized yield prediction model using ratio-based red-edge

indices across different varieties to extend its applicability in production fields.

Keywords Remote sensing � Rice � Red-edge � Water background � Nitrogen

Introduction

Water and nitrogen (N) are the most limiting inputs in crop production. Since rice is grown

in a flooded environment, N is often considered the most important input that limits grain

yield. Currently in the mid-southern United States, N rate recommendations for rice (Oryza

sativa) are variety dependent and determined from multi-year N response trials across sites,

which are further adjusted by soil type, and cultural practice (Harrell et al. 2011; Norman

et al. 2000). Generally, two N fertilizer applications are made seasonally in drill-seeded,

delayed-flood rice. The first is made just before permanent flood establishment and the

second is applied mid-season. Nitrogen fertilizer recommendations made in this manner

can potentially over- or under-estimate N rate due to the lack of consideration of spatial

and temporal variability. Remote sensing technology has recently been investigated as a

tool to predict optimum mid-season N application rates while accounting for both field

spatial and temporal variability (Cao et al. 2015; Harrell et al. 2011; Tubaña et al. 2008).

Remote sensing-based N management has been studied in many crops, including corn

(Zea mays), wheat (Triticum aestivum) and cotton (Gossypium hirsutum) (Raun et al. 1999;

Tubaña et al. 2008). Raun et al. (2005) established an N algorithm for mid-season N

requirements based on estimating N uptake and yield potential using a GreenSeeker� hand

held sensor (Trimble, CA, USA). This N rate recommendation, derived from spectral

indices, has been tested and showed promise in increasing N use efficiency (NUE). A

sensing-based N fertilization algorithm reduced the traditional N rate by 33 % while

maintaining a similar rice grain yield (Xue and Yang 2008). Dobermann et al. (2002)

conducted site-specific N management in 179 fields based on SPAD chlorophyll meter

readings. Their approach was to modify N rates depending on the critical value of the

SPAD meter at specific growing stages and variety. It resulted in an increase in NUE by

30–40 %. A similar approach was tested by Xue and Yang (2008) using the normalized

difference vegetation index (NDVI) from a sufficient-N fertilized reference field and from

farmers practice. According to these studies, determining optimum mid-season N rates

using remote sensing technology is highly feasible.

Based on Raun et al. in 2005, it is necessary to have an established yield prediction

model in order to develop an N algorithm for determination of N rates that will maximize

crop yield. Wells et al. (1989) found that biomass production is closely related to rice grain

yield. Harrell et al. (2011) demonstrated that the NDVI was related to both above-ground

biomass measured early in the season and rice grain yield. They showed that 42 % of the

total variability in grain yield can be explained by the NDVI collected at panicle differ-

entiation (PD). Calculated NDVI from second derivative analysis also showed a high

potential for predicting rice grain yield (Shibayama and Akiyama 1991). Along with

predicting grain yield at mid-season, many researchers have also monitored plant N status

using spectral reflectance (Sims and Gamon 2002; Stroppiana et al. 2009; Zhang et al.

2006).
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Unlike corn, wheat or other crops, the water background in rice is a unique feature

which may require additional consideration when using sensor technology. A water-

compared to a soil-background may affect the spectral reflectance and vegetation indices

values. Normally, water transmits most of the incident radiation in the visible wavelength,

which results in the small reflection of light. In contrast to pure water, water in paddy rice

may be turbid due to suspended soil sediments. In addition, when collecting sensor data

using a handheld sensor, the degree of turbidity increases due to disturbances created by

walking in the paddy field. In turn, the turbidity may alter the absorption and reflection of

light. Water absorbs near-infrared (NIR) wavebands; thus, the reflectance in that region

decreases as the area of exposed surface water increases in rice fields. There is also a

potential interference on spectral reflectance especially with low rice biomass observed

during early growth stages. Many studies have been conducted to investigate spectral

reflectance on turbid water surfaces mainly to monitor water quality (Abd-Elrahman et al.

2011; Wu et al. 2014; Vincikova et al. 2015). Their results indicated that water surfaces

can generate different spectral signatures. For example, a study conducted by Han (1997)

showed that a change in the degree of suspended sediment concentration (SSC) altered

spectral reflectance between 400 and 900 nm. Based on his research, the strongest cor-

relation between SSC and spectral reflectance was observed at 800–900 nm. Hoshi et al.

(1984) showed that an increase in water depth reduced spectral reflectance due to increased

radiant absorption in water. The findings of these previous studies warrant further research

of a similar scope to explore the possibilities of increasing the accuracy and precision of

rice grain yield predictive models established from canopy reflectance. Understanding and

addressing the effect of different water backgrounds on spectral reflectance in rice pro-

duction can improve the use and application of this technology for midseason N

applications.

The most commonly used and tested vegetation index, NDVI, which is computed using

reflected light at red and NIR bands, is of limited use when biomass and leaf area index

(LAI) are high or when the crop has reached complete canopy closure. The sensitivity of

the NDVI decreased due to the insusceptible rate of change in the amount of reflected light

at the red or NIR bands as plant canopy ground coverage increased (Gitelson et al. 2002).

In fact, the use of the current rice yield prediction model using the NDVI in Louisiana is

limited when grain yield exceeds 8000 kg ha-1 (Harrell et al. 2011). This phenomenon

was also detected in a variety of crops, including corn and cotton (Galvão et al. 2005;

Jackson and Pinter 1986). To address this problem, many studies evaluated an alternative

spectral region called red-edge. Red-edge approximately refers to 680–740 nm in the

electromagnetic spectrum and is the wave band between the red and NIR bands. Radiation

in the red band is strongly absorbed by chlorophyll pigments whereas radiation from the

NIR band is reflected based on leaf structure.

Cao et al. (2015) compared the performance of different vegetation indices to predict

rice grain yield at different growth stages. Based on their study, at early growth stage (stem

elongation), the red-based vegetation indices, such as NDVI or simple ratio (RVI), resulted

in better relations with rice grain yield. However, as the plant approaches the maturity

stage (booting and heading stage), red-edge-based ratio indices performed better when

compared with red-based ratio indices. Similar results were found by Peng and Gitelson

(2012) in estimating crop gross primary productivity (GPP) using total canopy chlorophyll

content and incoming photosynthetically active radiation. Their study showed that the

NDVI had good sensitivity at low to moderate chlorophyll content and GPP, but the

sensitivity drastically decreased once the crop stand reached moderate to high density.

Furthermore, normalized difference red edge (NDRE) had showed a stronger degree of
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linear relationship with GPP (R2 = 0.87 and 0.86) than the red-based NDVI (R2 = 0.83

and 0.89) in soybean and corn, respectively.

Within the red-edge band, scientists are also focusing on the red-edge inflection point

(REIP), defined as the maximum of the first derivative reflectance between the red and NIR

regions. Van der Meer and De Jong (2006) showed that the REIP had a strong correlation

with N concentration at dense plant canopy ground coverage. The red-edge inflection point

determined by various techniques also had a high correlation coefficient (r[ 0.85) with

leaf N in rye (Secale cereale) and corn (Cho and Skidmore 2006). The vegetation index

using red-edge band has potential to improve the current yield prediction algorithm.

Varietal differences in yield and physiological N response are important information to

refine N rate recommendations. However, many varieties are currently used in the southern

United States for large scale production, and N rate recommendations are slightly different

depending on variety (Saichuk et al. 2012; Walker and Street 2003). The varietal differ-

ences in geometrical canopy structure and foliar chemical compositions give a unique

spectral signature. Darvishsefat et al. (2011) showed the differences in spectral signatures

among varieties in rice. Jackson and Pinter (1986) obtained 20 % higher reflectance values

in wheat with planophile canopies (non-erect) as compared with erectophile canopies

(erect). Similar results were also observed in sugarcane (Saccharum officinarum) (Galvão

et al. 2005). Therefore, it is important to understand the potential impact of using different

varieties with different canopy structures on spectral reflectance.

This study was conducted to evaluate the use of red and red-edge spectral reflectance-

based indices as predictors of mid-season agronomic parameters (biomass, N uptake and

plant coverage) and grain yield of two rice varieties with different canopy structure. Given

this objective, the relationship of biomass with spectral reflectance readings under

undisturbed and turbid water background and varying water depth was evaluated. In

addition, the relationships of red-edge reflectance with mid-season agronomic parameters

and yield were also evaluated. Finally, the impact of varietal difference on the grain yield

prediction model using red-edge vegetation indices was examined. The findings from this

study is vital for refining the rice yield potential predictive model as well as the working

algorithm for determination of midseason N rate recommendations in rice.

Materials and methods

Location and experimental design

A study was established at the Louisiana State University AgCenter H. Rouse Caffey Rice

Research Station located in Crowley, Louisiana in the U.S.A. (30�1402300N, 92�2004400W).

Experimental plots were established under conventional tillage on a Crowley silt loam soil

(fine, smectic, thermic TypicAlbaqualfs). The experiment consisted of seven preflood N

rates (0, 34, 68, 101, 135, 168, and 202 kg ha-1) with four replications arranged in a

randomized complete block design. For each replication, one unplanted plot was added as a

reference. Two varieties, CL152 (an early-maturing, semidwarf long-grain) and CL261 (an

early maturing, short stature medium grain), were tested. CL152 is generally taller than

CL261. Rice was drill-seeded on March 16, 2011 and on March 19, 2012 at a depth of

40 mm at a seeding rate of 300 seeds m-2 using a small-plot grain drill. Each plot was 1.38

by 4.8 m2. Once rice seedling reached the 4- to 5-leaf stage, N fertilizer in the form of urea

(46 % N) was broadcasted and permanent flood was established 1 day later.
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Sampling area and data collection

After rice seedlings reached the 3 leaf-stage, 1 m 9 1 m 9 0.3 m (1 9 w 9 h) galvanized

borders were carefully pressed onto the ground around each plot to a depth of 25 mm

creating a 1 m2 sampling area. The borders protected the sampling area from disturbance

while taking measurements (reflectance readings, digital picture and depth of water) under

a clear, non-turbid water background. Reflectance readings were measured again with a

turbid water background. To make the water turbid, water inside the 1 m2 sampling area

was carefully mixed with a meter stick. Whole plant samples were taken for biomass yield

and total N determination at each sampling period. Reflectance and biomass measurements

were taken each week for three consecutive weeks beginning 2 weeks before PD (about

1500 cumulative growing degree days, GDD). At maturity, whole plots were harvested

using a small plot combine to determine grain yield. Detailed field activities are listed in

Table 1.

Canopy reflectance measurements were taken using the Ocean Optics Jaz spectrometer

(Ocean Optics, Dunedin, FL, USA), which detects continuous wavebands from 300 to

1100 nm with an optical resolution of 1.5 nm. Incident light (down-welling irradiance) and

the outgoing light (upwelling) from a 1 m2 white steel plate coated with barium sulfate was

determined and used to correct environmental noise interference before plant canopy

measurements were taken. Dark readings were measured by covering the sensor with a cap

and fabric material. The distance between the fiber optic sensor and target (white plate or

rice canopy) was determined to make sure that the field of view covered a 1 m2 area

(sampling area size). The distance between the rice canopy and fiber optic sensor was

calculated based on the len’s field of view using trigonometry functions. The cosine

corrector and Gershun tube with a 28� field of view was attached to the fiber optic sensor.

Since the field of view was 28�, the height required to cover 1 m2 was computed by

multiplying tangent 14� with the length of the adjacent side.

Digital pictures taken from the sampling area were analyzed using Integrated Land and

Water Information System (ILWIS) software (The Faculty of Geo-Information Science and

Earth Observation of the University of Twente, The Netherlands) to compute the per-

centage of ground coverage by plant. A digital camera was attached to a hand-held, self-

telescopic stand stick with a constant height of 1.5 m to take a top-view shot of the plots.

Table 1 Dates of field activities and corresponding number of days from planting and cumulative growing
degree days for the trials established in Crowley, LA in 2011 and 2012

2011 2012

Date DFPa CGDDb Date DFPa CGDDb

Planting 16-Mar 0 0 19-Mar 0 0

N fertilization 20-Apr 36 385 23-Apr 40 441

Panicle differentiation 23-May 76 927 25-May 64 851

Panicle Differentiation ? 1 week 6-Jun 82 1044 30-May 73 936

50 % Heading 13-Jun 89 1169 6-Jun 79 1035

Harvest 5-Aug 143 2166 1-Aug 136 2028

a DFP refer to days from planting
b CGDD refer to cumulative growing degree days computed as (maximum daily temperature ? minimum
daily temperature)/2) - 10 �C
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Biomass samples (one of 1-month long rows) were cut at the soil level at each sampling

date. Biomass samples were then oven-dried at 60 �C for 48 h, weighed, ground, and ana-

lyzed for total N analysis using the dry combustion method (Elementar Americans Inc.,

Mount Laurel, NJ, USA). Grains sub-samples were also processed and analyzed for total N.

Spectral reflectance and indices

Normalized and simple ratio

Ratio-based vegetation indices using visible and NIR are the most widely used due to their

feasibility in practical field conditions. The normalized form of the vegetation index is

generally the ratio of difference and the sum of red and NIR reflectance. Vegetation

indices, which showed strong relations with yields based on literature reviews, were

computed using the following formulae:

Red simple ratio vegetation index, RVI (Tubaña et al. 2011)

RVI ¼ q780=q670 ð1Þ

Normalized difference vegetation index, NDVI (Harrell et al. 2011)

NDVI ¼ q780 � q670
q780 þ q670

ð2Þ

Red-edge simple ratio vegetation index, RERVI (Cao et al. 2015)

RERVI ¼ q780=q730 ð3Þ

Normalized difference red-edge, NDRE (Peng and Gitelson 2012)

NDRE ¼ q780 � q730
q780 þ q730

ð4Þ

Red-edge re-normalized difference vegetation index, RERDVI (Cao et al. 2015)

RERDVI ¼ ðq780 � q730Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðq780 þ q730Þ
p

ð5Þ

Red-edge difference vegetation index, REDVI (Cao et al. 2015)

REDVI ¼ q780 � q730 ð6Þ

Red-edge soil adjusted vegetation index, RESAVI (Huete 1988)

RESAVI ¼ 1:5 � ½ðq780 � q730Þ=ðq780 þ q730 þ 0:5Þ� ð7Þ

Red-edge optimal soil adjusted vegetation index, REOSAVI (Cao et al. 2013)

REOSAVI ¼ ð1þ 0:16Þðq780 � q730Þ=ðq780 þ q730 þ 0:16Þ ð8Þ

Red-edge wide dynamic range vegetation index, REWDRVI (Gitelson 2004)

REWDRVI ¼ ð0:15 � q780 � q730Þ=ð0:15 � q780 þ q730Þ ð9Þ

Red-edge chlorophyll index, CIRE (Gitelson et al. 2005)

CIRE ¼ q780=q730 � 1 ð10Þ
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In this study, the REIP was determined by using: maximum first derivative analysis by

polynomial fitting technique (REIPDF), linear interpolation technique (REIPLI), linear

extrapolation technique (REIPLE), and the Lagrangian technique.

Fifth order polynomial fitting technique

A polynomial function was fitted to the spectral reflectance between red and NIR (670–

780 nm) using TableCurve 2D v5.01 software (Systat Software Inc, San Jose, CA, USA).

The maximum first derivative reflectance was computed as REIPDF (Cho and Skidmore

2006).

qðkÞ ¼ a0 þ
X

5

i¼1

aik
i ð11Þ

where k (wavelength) is from 670 to 780 nm.

Linear interpolation technique

The linear interpolation method was used to estimate the REIP by employing reflectance at

four different wavebands (Cho and Skidmore 2006; Guyot and Baret 1988). The benefit of

this method is that it does not require continuous wavebands for derivative analysis. The

reflectance between red and NIR is assumed to be simple straight line (Van der Meer and

De Jong 2006).

REPLI ¼ 700þ 40 � ðqREP � q700Þ
ðq740 � q700Þ

ð12Þ

where

qREP ¼ q670 þ q780
2

ð12aÞ

Linear extrapolation technique

The linear extrapolation technique was developed by Cho and Skidmore (2006). This

method eliminates the problem from the double-peak which can be observed in high N

treated plant or when the chlorophyll concentration is high using the first derivative

analysis. The two straight lines, one from NIR and the other from red points, were com-

puted based on the first derivative reflectance and the intersection of those straight lines

was considered as the REIP.

REPLE ¼ �ðb1 � b2Þ
ða1 � a2Þ

ð13Þ

where NIR line: 1st derivative reflectance ðkÞ ¼ a1kþ b1; red line: 1st derivative reflec-

tance ðkÞ ¼ a2kþ b2
In rice, two major peaks around 700 nm and between 720 and 730 nm (depending on

plant health conditions, such as high N or low N) have been reported in the first derivative

reflectance (Evri et al. 2008; Tian et al. 2011). In this study, similar characteristics were

observed; a sharp drop of the first derivative reflectance around 760 nm (Tian et al. 2011).
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Therefore, to determine the NIR lines, 725- and 750-nm bands were selected while 680-

and 700-nm bands were selected for the red line.

The Lagrangian technique

This technique was tested by Dawson and Curran (1998) using a three-point Lagrangian

interpolation, and the REIP computed in this method showed positive correlation with leaf

chlorophyll content. Dawson and Curran (1998) stated that this method was suitable for

discontinuous spectra, since it only requires the three derivative bands which do not have

to be equally spaced, but the later study conducted by Pu et al. (2003) concluded that it was

not suitable because it requires first derivative reflectance.

REPLAG ¼ Aðki þ kiþ1Þ þ Bðki�1 þ kiþ1Þ þ Cðki�1 þ kiÞ
2ðAþ Bþ CÞ ð14Þ

where

A ¼
Derivative reflectanceði�1Þ
ðqi�1 � qiÞðqi�1 � qiþ1Þ

ð14aÞ

B ¼
Derivative reflectanceðiÞ
ðqi � qi�1Þðqi � qiþ1Þ

ð14bÞ

C ¼
Derivative reflectanceðiþ1Þ
ðqiþ1 � qi�1Þðqiþ1 � qi1Þ

ð14cÞ

In this method, central band (ki) should be close to the maximum first derivative

reflectance. In rice, double peaks have been reported (Cho and Skidmore 2006; Tian et al.

2011) in the first derivative reflectance. The wavebands should be adjusted depending on

plant conditions which would be problematic when this technology is brought into prac-

tical field use. In this study, plants which received general pre-plant application in pro-

ducer’s field showed that the maximum first derivative reflectance was around 730 nm.

Therefore, qi�1 = 710 nm, qi = 730 nm and qiþ1 = 750 nm were selected to extract the

REIP using the Lagrangian technique for this study.

Statistical analysis

Statistical analysis was performed using SAS 9.2. (SAS Institute 2009) and R (Compre-

hensive R Archive Network). The regression analysis model was built to identify the

impact of water turbidity and depth on the reflectance using R at each wavelength with the

following equations. For water turbidity, samples were categorized by plant coverage (25–

50, 50–75, and 75–100 %) and statistical analyses were performed.

Yi ¼ b0 þ b1X1 þ b2X2 ð15Þ

where b1 = coefficient of water background; b2 = coefficient of plant biomass; X1 = 0 if

water is clear, = 1 if water is turbid; X2 = dry plant biomass kg ha-1; Yi = spectral

reflectance at each wavelength

Yi ¼ b0 þ d1W1 þ d2W2 ð16Þ
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where d1 = coefficient of water depth; d2 = coefficient of plant biomass; W1 = depth of

water; W2 = dry plant biomass kg ha-1; Yi = spectral reflectance at each wavelength

The analysis of variance (ANOVA) and analysis of covariance (ANCOVA) were per-

formed with PROC MIXED procedure using SAS. Categorical variables, such as the effect

of N rate and variety, are easily analyzed using ANOVA while regression analysis is

applied when variables are quantitative or continuous. Since both analyses were performed

under the concept of a least squares technique, it is valid to put both analyses into a single

analysis, which is called ANCOVA. The ANCOVA can evaluate the effect of categorical

variables on a linear relationship of quantitative variables. First, the effect of variety on the

yield, biomass and plant coverage was determined using ANOVA. The effects of variety

on the relationship between spectral indices and agronomic parameters at different growth

stage were also investigated by ANCOVA with the following equation:

Yi ¼ b0 þ b1I þ b2V þ b3I
�V ð17Þ

where b1 = coefficient of vegetation indices based on red-edge reflectance; b2 = coefficient

of variety; b3 = coefficient of variety*vegetation indices; I = vegetation indices based on

red-edge reflectance; V = 0 if variety is CL261, V = 1 if variety is CL152 Yi = grain yield

kg ha-1

If Y-intercepts (b2) are significantly different from zero, this indicates grain yield of

variety CL152 is significantly different from CL261. If slopes (b3) of the regression lines

are significantly different, this indicates that the increase of yield per unit increase of

vegetation is different between CL152 and CL261.

Results and discussions

The effect of water turbidity and depth on spectral reflectance

During the sampling period [PD, 1 week after PD (PD ? 1 week), and 50 % heading

(50 % HD)], canopy coverage from planted plots ranged from 35 to 100 % (Fig. 1).

Majority of plots reached more than 50 % of plant coverage at PD (Table 2). Since supply-

unfertilized plot had at least 25 % plant coverage at PD, the statistical analysis was

performed for 25–50, 50–75 and 75–100 %. There was significant effect of water turbidity

on the visible spectral reflectance, at plant coverage between 25 and 50 % (Fig. 2). Hoshi

et al. (1984) also represented the different levels of spectral reflectance depending on water

background (color), and it was evident at 600–750 nm. The effect of water turbidity can be

an issue. However, from a practical point of view, most fields are treated with pre plant N.

Therefore, there would be more than 50 % of the plant coverage during the sensing period.

Once the plant covered 50 % of the area, the effect of water turbidity was not observed on

the spectral reflectance. The graph in Fig. 3 shows the coefficient of water turbidity on the

linear regression. Since the upper and lower 95 % confidence interval of the coefficient

includes zero across all wavelengths, it can be concluded that water turbidity had no

measurable effect on spectral reflectance measured from 400 to 900 nm. The study con-

ducted by Vaesen et al. (2000) showed a similar result. Their study examined the effect of

water turbidity only on vegetation indices, not on each wavelength; the relationship

between the LAI and NDVI or RVI was not influenced by water turbidity. For the current

study, the impact of water turbidity on spectral reflectance can only be substantial when

canopy coverage is low and then becomes negligible when crop canopy goes beyond 50 %

Precision Agric (2016) 17:507–530 515

123



coverage. No significant effect of water depth on the spectral reflectance was observed

except at red wavelength (Fig. 4). Theoretically, an increase in water depth should

decrease reflectance due to the increased radiant absorption in the water (Hoshi et al.

1984). However, the results from this study show otherwise. One of the potential reasons

relies on the relationship between water depth and growth of algae and weeds. For both

cropping years, growth of ducksalad (Heteranthera limosa) on the surface of water was

evident at the research sites. According to Sen et al. (2002), water depth can affect the

population or growth of certain weed species; an increase in water depth reduced weed

growth. This further implies an increase in red reflectance since weed or algae interference

increases absorbance of red light. Thus, even with the coefficients of NIR and green

regions being not significant, this assumption can explain the slight negative coefficient

values obtained from the linear regression. Since the population of algae or weeds was not

determined, further research is required to understand this behavior of red reflectance

associated with water depth. With this observation, regression between vegetation indices

derived from the red reflectance and measured plant variables was performed for each

sampling time using a statistical regression model with the following equation;

Yi ¼ b0 þ d11W1 þ d22W2 ð18Þ

where d11 = coefficient of water depth; d22 = coefficient of plant biomass; W1 = depth of

water; W2 = dry plant biomass kg ha-1; Yi = NDVI or RVI

According to the model, water depth had no significant effect on the NDVI (p = 0.11,

0.97 and 0.09 at PD, PD ? 1 week and 50 % HD, respectively) and RVI (p = 0.73, 0.33
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Table 2 Analysis of variance for the effect of variety and N rate on plant coverage (%) at panicle dif-
ferentiation (PD), panicle differentiation ? 1 week (PD ? 1 week), and 50 % heading (50 % HD) in rice in
Crowley, LA in 2011 and 2012

Treatment 2011 2012

Plant coverage (%)

PD PD ? 1 week 50 % HD PD PD ? 1 week 50 % HD

Variety

CL152 n� 81b 85a 83a 84a 86a

CL261 n 84a 83a 81a 82a 85a

Nitrogen rate kg ha-1 CL261 CL152

0 39d 39c 41c 44c 29c 32d 42

44 67c 76b 78b 78b 88b 76c 87b

88 84b 96a 95a 100a 93ab 95b 99a

132 93a 97a 100a 100a 99a 100a 100a

176 99a 100a 100a 100a 100a 100a 100a

Variety 9 N level * NS NS NS NS NS

NS no significant at a = 0.05 level

* Significant at a = 0.05 level
� Same letter within column indicate no significant differences between the treatment means based on the
Tukey’s post hoc analysis
n Significant at variety 9 N level; therefore means are listed by variety at each N rate
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and 0.06 at PD, PD ? 1 week and 50 % HD, respectively). This may have resulted from

the relative small shifts of red reflectance as the plant biomass or coverage increased. As

shown in Fig. 1, the change of red reflectance associated with plant coverage which ranged

from 35 to 100 % was extremely small compared with NIR reflectance. This behavior of
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red reflectance is related to its saturation point at relatively low chlorophyll contents (Sims

and Gamon 2002). Therefore, if the red band is used as a single red wavelength, the effect

of water depth on the spectral reflectance would be significant. However, when expressed

as a vegetation index in combination with other bands, the effect of water on the spectral

reflectance can be negligible, especially at mature plant growth stages. Substantial plant

coverage is achieved at PD, the growth stage where N fertilization is commonly done in the

mid-southern United States rice production systems and the optimal time for sensing to

estimate in-season yield and N response index according to Harrell et al. (2011) and

Tubaña et al. (2011), respectively. From a practical stand point, the problem associated

with water depth in rice at this growth stage is expected to be minimal.

The relationship between vegetation indices and agronomic parameters

There were significant differences on dry biomass, N uptake, plant coverage, and grain

yield between the two varieties in 2011 but not in 2012 (Tables 2, 3, 4, and 5). The variety

CL261 had higher biomass, N uptake and plant coverage at PD in 2011. The varietal

differences on biomass as well as percent of plant coverage were significant at PD and

PD ? 1 week (Tables 2, 4). In terms of N uptake, the significant difference was only

observed at PD (Table 5). The varietal effect on these agronomic parameters was more

evident until PD ? 50 % but not at 50 % HD. In 2012, blast disease caused by a fungal

pathogen (Pyricularia oryzae) substantially decreased plant vigor which ultimately

reduced biomass production and N uptake. This was especially true for CL261 which is

classified as very susceptible to blast (Tables 4, 5). This reduction in mid-season biomass

production potentially affected the grain yield resulting in a significant variety 9 N rate

interaction effect on grain yield in 2012. Grain yields were decreased by about

Table 3 Analysis of variance for the effect of variety and N rate on rice grain yield in Crowley, LA in 2011
and 2012

Treatment 2011 2012

Grain yield kg ha-1

Variety

CL152 8911b� n

CL261 9373a n

Nitrogen rate kg ha-1 CL152 CL261

0 6404d 3611d 3851e

44 8111c 5832c 5114d

88 9747b 7354b 6727c

132 10380ab 8454a 7383b

176 11067a 8794a 8002a

Variety 9 N level NS **

NS no significant at a = 0.05 level

** Significant at a = 0.01 level
� Same letter within column indicate no significant differences between the treatment means based on the
Tukey’s post hoc analysis
n Significant at Variety 9 N level; therefore means are listed by variety at each N rate
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Table 4 Analysis of variance for the effect of variety and N rate on biomass at panicle differentiation (PD),
panicle differentiation ? 1 week (PD ? 1 week), and 50 % heading (50 % HD) in rice in Crowley, LA in
2011 and 2012

Treatment 2011 2012

Biomass kg ha-1

PD PD ? 1 week 50 % HD PD PD ? 1 week 50 % HD

Variety

CL152 3743b 5024b 10837a 3181a 3565a 3284a

CL261 4913a 6574a 12090a 3350a 3671a 3181a

Nitrogen rate kg ha-1

0 2345c 3233b 6605c 1315d 1727c 1312d

44 3850b 4892b 10486bc 2445c 3335b 2445c

88 4853ab 7137a 12863ab 3453b 4000ab 3453bc

132 5007a 6813a 12886ab 4148ab 4421a 4148ab

176 5586a 6921a 14476a 4968a 4609a 4804a

Variety 9 N level NS NS NS NS NS NS

NS no significant at a = 0.05 level
� Same letter within column indicate no significant differences between the treatment means based on the
Tukey’s post hoc analysis

Table 5 Analysis of variance for the effect of variety and N rate on N uptake (kg ha-1) at panicle
differentiation (PD), panicle differentiation ? 1 week (PD ? 1 week), and 50 % heading (50 % HD) in rice
in Crowley, LA in 2011 and 2012

Treatment 2011 2012

N uptake kg ha-1

PD PD ? 1 week 50 % HD PD PD ? 1 week 50 %HD

Variety

CL152 n� 91a 176a 76a 72a 53a

CL261 n 107a 189a 79a 73a 54a

Nitrogen rate kg ha-1 CL261 CL152

0 29c 33c 40b 78c 18d 22c 13d

44 50c 63bc 65b 138bc 43 cd 50bc 29d

88 92b 87b 116a 191ab 74bc 80ab 52c

132 96ab 132a 126a 238a 117ab 94a 73b

176 118a 160a 148a 269a 135a 116a 100a

Variety 9 N level * NS NS NS NS NS

NS No significant at a = 0.05 level

* Significant at a = 0.05 level
� Same letter within column indicate no significant differences between the treatment means based on the
Tukey’s post hoc analysis
n Significant at variety 9 N level; therefore means are listed by variety at each N rate
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3000 kg ha-1 for each N rate in 2012 (Table 3). A high yield level associated with high

biomass at mid-season supports the sensing-based concept of estimating above ground

biomass at mid-season to predict yield. However, in addition to this fact, Harrell et al.

(2011) discussed the implementation of additional elements in predicting yield since

biomass is not the only parameter which always carried over at harvest and influenced

production level of grain yield. For example, they mentioned the risk of decrease in yield

due to lodging and disease infection with increasing biomass production.

The red-edge-based vegetation indices had a stronger degree of linear relationship with

biomass, N uptake, and grain yield compared with red-based indices (Table 6; Fig. 5). At

PD, the r values of the linear relationships of biomass was 0.72 and 0.79 for the RVI and

NDVI while it improved to 0.84 and 0.84 using the RERVI and NDRE, respectively. Along

Table 6 The coefficient of correlation (r) between vegetation indices and each agronomic variable at
panicle differentiation (PD), panicle differentiation ?1 week (PD ? 1 week), and 50 % heading (50 % HD)

Vegetation index PD PD ? 1 week 50 % HD PD PD ? 1 week 50 % HD

Biomass N uptake

RVI 0.72 0.77 0.66 0.56 0.76 0.75

NDVI 0.79 0.76 0.61 0.67 0.75 0.64

RERVI 0.84 0.83 0.70 0.83 0.84 0.75

NDRE 0.84 0.79 0.64 0.83 0.84 0.73

RERDVI 0.85 0.82 0.52 0.80 0.84 0.65

REDVI 0.84 0.85 0.53 0.74 0.82 0.66

RESAVI 0.81 0.69 0.59 0.83 0.81 0.63

REOSAVI 0.76 0.76 0.57 0.68 0.75 0.57

REWDRVI 0.81 0.69 0.59 0.83 0.82 0.63

CIRE 0.81 0.69 0.59 0.83 0.82 0.63

REIPDF 0.75 0.69 0.57 0.78 0.76 0.62

REIPLI 0.81 0.69 0.61 0.85 0.82 0.72

REIPLAG 0.44 0.29 0.39 0.45 0.32 0.41

REIPLE 0.75 0.76 0.58 0.75 0.84 0.62

Plant coverage Yield

RVI 0.48 0.67 0.65 0.72 0.83 0.83

NDVI 0.76 0.87 0.81 0.82 0.86 0.84

RERVI 0.77 0.84 0.76 0.82 0.85 0.89

NDRE 0.83 0.88 0.78 0.85 0.88 0.90

RERDVI 0.71 0.80 0.82 0.88 0.86 0.81

REDVI 0.64 0.73 0.81 0.89 0.87 0.81

RESAVI 0.77 0.84 0.81 0.78 0.76 0.81

REOSAVI 0.72 0.88 0.92 0.85 0.84 0.79

REWDRVI 0.76 0.83 0.79 0.78 0.75 0.80

CIRE 0.75 0.82 0.79 0.78 0.75 0.80

REIPDF 0.91 0.94 0.81 0.71 0.81 0.85

REIPLI 0.82 0.86 0.74 0.78 0.78 0.84

REIPLAG 0.55 0.46 0.63 0.43 0.38 0.62

REIPLE 0.78 0.92 0.73 0.72 0.88 0.85
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with these two vegetation indices, the REDVI also yielded constant high r values across the

sampling period. With regards to biomass, the degree of improvement using red-edge-

based indices declined as the rice grew. The improvement of linear relationship with N

uptake or grain yield using red-edge-based indices was more evident. Across sampling

periods, about 50 % of total variability in N uptake was explained by red-based vegetation

indices such as the NDVI and RVI while red-edge-based vegetation indices explained

about 69 % of total variability in N uptake (Table 6). Similar results were observed

between vegetation indices and grain yield. Red-based spectral indices can explain

49–72 % of total variability in grain yield while the range improved from 64 to 81 % using

red-edge-based vegetation indices. The relationships between the RERVI and measured

parameters (biomass, N uptake and grain yield) resulted in the most frequent number of

high r values across sampling periods.

The red-edge position reflectance readings (REIPDF, REIPLI, REIPLAG and REIPLE)

computed from derivative analysis were also closely related to those agronomic parame-

ters. The advantage of red-edge reflectance has been reported in many studies (Cho et al.

2008; Curran et al. 1990; Mutanga and Skidmore 2004). One of its advantages over red-

based indices, such as the NDVI, is an increased sensitivity in detecting plant physiological

status at high plant biomass or coverage. This is due to its position being between the bands

where strong absorption of light by plant pigments and high leaf reflection occur. The poor

estimation using the NDVI is associated with the absorption of red light approaching

saturation at full plant canopy coverage (Sims and Gamon 2002; Thenkabail et al. 2000).

As shown in Fig. 6, the NDVI reached plateau at lower biomass level (4142 kg ha-1)

when compared with the REIP (6057 kg ha-1) based on nonlinear regression analysis. This
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indicates that the amount of biomass beyond 4142 kg ha-1 is not a function of the NDVI.

On the other hand, red-edge-based indices remained a function (quadratic) of biomass even

when biomass weighed more than 6000 kg ha-1 and fitted in a linear regression model.

This result demonstrated the improvement in estimating plant physiological conditions

using red-edge position waveband at mid-season in rice.

Based on previous studies (Pu et al. 2003; Cho et al. 2008), derivative-based red-edge

indices were reported to be more sensitive to changes on both leaf chlorophyll content and

the LAI at dense plant canopy or biomass. This higher sensitivity can be attributed to

derivative analysis which can magnify signal properties at an absorption region and also

changes of scattering properties at longer wavelengths (Boochs et al. 1990). In the present

study, the degree of REIPs reflectance relationships with biomass varied across sampling

times. For example, the low r values in the REIPLAG at PD show several outliers which are

potentially associated with the complex computation of the REIP with the use of multiple

wavebands. Several studies also noted the relatively higher complexity of computing the

REIPLAG compared with the REIPDF, REIPLI or REIPLEP (Cho and Skidmore 2006; Shafri

et al. 2006). One of the reasons for the difficult computation of the REIPLAG is that this

technique is not suitable if the spectral band used is not continuous. In addition, formu-

lation and computation is relatively complicated compared with other techniques. Shafri

et al. (2006) mentioned that the REIP based on the Lagrangian technique had a weaker

relationship with the LAI which agreed with the results of this study i.e. it had the lowest

r values with agronomic parameters. Curran et al. (1990) summarized the importance of

holding right assumptions, such as illumination levels should be independent from REIP

and most of measured radiation by the sensor should be reflected from plant leaf, when

REIPs were measured. Under dynamic environmental systems, those assumptions might be

violated and eventually affect the readings at the REIPs. Overall, the first derivative-based

REIP had potential to estimate agronomic parameters in rice but in terms of practical

a) b)
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Bi
om

as
s k

g 
ha

-1

NDVI

Observed NDVI
Plateau model

Y = 821.36x - 588202

0.4 0.6 0.8 1 715 720 725 730 735
REIPDF

Observed REP
Plateau model

Y=451x-322729  if  x<729
Y=6057 if x ≥ 729

Y=8560x-3133 if x<0.85
Y=4142 if x ≥ 0.85

Linear model

Observed REIPDF

(a) (b)

Fig. 6 Comparison of the relationship of biomass with (a) normalized difference vegetation index (NDVI)
and (b) red-edge position (REIPDF) using polynomial fitting technique

Precision Agric (2016) 17:507–530 523

123



application in the field, such as requiring continuous wavebands, further investigation is

required to establish the feasibility of this technique in large production fields.

The red-edge vegetation indices expressed in normalized and ratio forms such as

RERVI and NDRE, had no derivative analysis involved, and yielded constant r values

across sampling periods (Table 6). In addition to reducing background variation, the

feasibility in data comparison due to the standardization is the advantage in using the

normalized or ratio-based vegetation indices (Daughtry et al. 2000; Malingreau 1989).

Unlike the REIP computation which involves continuous or multiple wavebands, the

RERVI and NDRE simply require only two wavebands. With respect to the fact that

applying remote sensing technology in nutrient management is still considered cost-in-

hibitive, the use of fewer bands would facilitate in developing affordable remote sensing

systems for crop production.

The effect of rice variety on the relationship between yield and red-edge reflectance

The coefficient table for linear regression to determine the effect of variety on the rela-

tionship between red-edge-based spectral indices and grain yields are summarized in

Table 7. Differences in variety were more evident when grain yield was related to red-edge

normalized or ratio-based vegetation indices. For example, the suggested linear models for

yield using the RERVI at PD were

Predicted grain yield ¼ �5712þ 8055�SRred�edge for variety CL152 ð19Þ

Predicted grain yield ¼ �3092þ 6005�SRred�edge for variety CL261 ð20Þ

This formula indicates that the 0.1 unit increase of the RERVI corresponds to a grain

yield increase of 806 kg ha-1 in variety CL152 but 600 kg ha-1 in variety CL261. Also,

when the RERVI is assumed to be one, the base line of grain yield is 2324 kg ha-1 for

variety CL152 and 2913 kg ha-1 for variety CL261. It implies that the corresponding

increase in grain yield by one unit increase in the RERVI would be different depending on

variety. This interpretation can apply not only at PD but across sampling periods when a

linear model of grain yield is established using the RERVI. This result then raised a

question on what spectral resolution should be used in predicting grain yield. When the

detection limit of the RERVI is assumed to be 0.1 then the minimum unit that the RERVI

can differentiate grain yield is 806 kg ha-1 for CL152 and 600 kg ha-1 for CL261. One

unit increase of the RERVI corresponds to a large range of yield increase in variety CL152;

therefore, the higher resolution of spectral reflectance would be required compared with

variety CL261 in terms of estimating certain unit increase in grain yield. For example, to

detect a 1000 kg ha-1 difference in grain yield, the RERVI needs to show at least 0.1

differences for variety CL152 but 0.2 for variety CL261. This difference in the resolution

of spectral reflectance is small but addressing this difference between varieties by having

separate models would pose complexities when remote sensing technology is carried over

to practical application. Accounting for the varietal effect when establishing the linear

grain yield model using the RERVI improved the R2 value from 0.67 to 0.73, 0.72 to 0.74,

and 0.79 to 0.83 compared with the simple regression model at PD, PD ? 1 week, and

50 % HD, respectively. This result showed that the effect of variety on the relationship

between the RERVI and grain yield changed with plant growth. The addition of individual

variety parameters, such as biomass, height and plant coverage as a predictive parameter

improved the model so that 5 % more in total variation in grain yield was explained.
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Table 7 The coefficient table for linear regression to determine the effect of variety on the relationship
between red-edge-based spectral indices and grain yields at panicle differentiation (PD), panicle differen-
tiation ?1 week (PD ? 1 week), and 50 % heading (50 % HD) in Crowley LA, in 2011 and 2012

Indices Growth stage R2 Coefficients

B0 B1 B2 B3

RERVI PD 0.73 -3092 6005 -2620 2050

PD ? 1 week 0.74 -5310 608 7154 –

50 % HD 0.83 -4238 6432 -3058 1999

NDRE PD 0.73 596 25,639 890 –

PD ? 1 week 0.76 -117 27,617 573 –

50 % HD 0.82 -648 28,587 508 –

RERDVI PD 0.83 2362 3207 -432 839

PD ? 1 week 0.77 2621 2898 -894 863

50 % HD 0.66 1996 3417 – –

REDVI PD 0.84 3698 229 -428 76

PD ? 1 week 0.79 3876 195 -842 73

50 % HD 0.65 3025 276 – –

RESAVI PD 0.66 231 30,904 924 –

PD ? 1 week 0.59 922 28,310 589 –

50 % HD 0.67 -37 30,015 621 –

REOSAVI PD 0.74 -242,182 218,025 597 –

PD ? 1 week 0.71 -317,387 283,356 – –

50 % HD 0.63 -345,374 307,816 – –

REWDRVI PD 0.65 73,450 92,101 942 –

PD ? 1 week 0.56 66,707 82,148 – –

50 % HD 0.66 69,882 87,786 641 –

CIRE PD 0.66 2166 14,120 -1095 5606

PD ? 1 week 0.58 1915 14,895 612 –

50 % HD 0.66 1178 15,366 647 –

REIPDF PD 0.45 -124,104 182 – –

PD ? 1 week 0.64 -175,646 252 – –

50 % HD 0.72 -185,746 266 – –

REIPLI PD 0.63 -401,254 798 563 –

PD ? 1 week 0.6 -394,877 544 – –

50 % HD 0.71 -371,885 522 – –

REIPLG PD 0.18 -54,026 84.9 – –

PD ? 1 week 0.15 -23,469 43 – –

50 % HD 0.38 -83,653 125 – –
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Although there was a significant effect of variety on the linear grain yield model using the

RERVI, the improvement in the relationship with yield was not evident. Therefore, one

simple model can be sufficient to relate yield based on the RERVI.

When the NDRE, RESAVI, REOSAVI and REWDRVI were used, there were no effects

of I*V indicating that there were no corresponding different relationships with grain yield

per unit increase of those indices between varieties (Table 7). However, there were still

notable effects of variety on the model by having different intercept values. As shown in

Table 7, when grain yield was regressed by the REIPs coefficients, b2 and b3, were not

significant. This indicates that there was no effect of variety or interaction of variety and

vegetation index on the yield regression model. Red-edge position has been reported to be

less sensitive to the changes of canopy structure, plant coverage, and leaf properties (Guyot

et al. 1992; Curran et al. 1995; Pu et al. 2003) which more likely result from different

varieties or species. Therefore, contrary to normalized or ratio-based indices, all REIP

indices which were defined as the point of red-edge waveband, did not require the sepa-

ration of the regressed model for two rice varieties. More complex computation is required

for the REIP indices. However, this result that varietal influence is minimized in the grain

prediction model may be after all advantageous since the prediction model does not require

calibration across varieties. This will be an important key to adopting technology when

many varieties exist in production fields.

The influence of variety on the relationship between grain yield and spectral reflectance

readings and their vegetation indices can be explained by the inherent differences in

physical and physiological attributes among varieties. Generally, reflectance at the NIR

band is associated with the plant geometrical structures as well as internal biophysical

structure rather than pigment composition, while reflectance within the visible wavelength,

especially red and blue, is highly related to absorption of two major pigments, chlorophyll

a and b. Reflectance at the REIP was reported to be a good indicator of biomass, N content,

and chlorophyll content (Cho et al. 2008; Elvidge and Chen 1995; Van der Meer and De

Jong 2006). Jackson and Pinter (1986) observed differences between planophile (non-

erect) and erectrophile (erect) canopies in wheat and Galvão (2005) also reported the

varietal effect on infrared spectral reflectance in sugarcane. Based on their study, distinct

differences were observed in the green (550 nm) and NIR (800 nm*) bands. Therefore, in

Table 7 continued

Indices Growth stage R2 Coefficients

B0 B1 B2 B3

REIPLE PD 0.52 -100,169 149 – –

PD ? 1 week 0.78 -149,918 216 – –

50 % HD 0.72 -137,077 199 – –

* Yi = b0 ? b1I ? b2 V ? b3 I*V

where b1 = coefficient of vegetation indices based on red-edge reflectance

b2 = coefficient of variety

b3 = coefficient of variety*vegetation indices

I = vegetation indices based on red-edge reflectance

V = 0 if variety is CL261, =1 if variety is CL152

Yi = grain yield kg ha-1

- effect (I, V or I*V) is not significant at a = 0.05 level
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this study, the distinct differences of biomass accumulation in varieties affected the

reflectance reading in the NIR region and then carried-over to vegetation indices com-

putation using simple or normalized ratio; this was not the case for the REIP. It is

important to note as well that the regression lines describing the relationship of the RERVI,

RERDVI, and REDVI with grain yield for each variety had different slopes but not when

NDRE, RESAVI, REOSAVI, and REWDRVI were used as predictors. This difference can

be explained by analyzing the mathematical expression of these two forms of vegetation

indices. The weighted impact of NIR and red-edge reflectance readings is eliminated when

expressed in normalized form (as in the NDVI). This explains why the distribution of the

NDVI readings was narrow even if there was a wider range in reflectance readings for NIR

than for the REIP. Unlike the NDVI, RERVI is simply a ratio which utilized reflectance

readings within the NIR and red-edge position without normalizing the values. This tends

to bring wide distribution of RERVI values. Even though RERDVI is not an RERVI form,

the square root properties of the denominator may enhance the difference of NIR and red

bands on the numerator and minimize the effect of normalization. The distinct behavior of

these two vegetation indices has been reported in several studies (Chang et al. 2005;

Tubaña et al. 2011).

Conclusions

Water background (turbid or clear) did not significantly alter spectral reflectance at PD,

PD ? 1 week, and 50 % HD once plant coverage exceeded 50 %. Water depth slightly

influenced the behavior of red reflectance but this effect was not carried over when veg-

etation indices, RVI or NDVI were computed. The red-edge-based vegetation indices had a

stronger degree of linear relationship with measured agronomic parameters as compared

with red-based indices. Vegetation indices expressed in normalized or ratio forms com-

puted from derivative spectral analysis (REIPDF, REIPLI, REIPLAG and REIPLE), resulted

in consistent r values across sampling periods. The effect of variety on the accuracy of the

yield prediction model varied depending on the transformation of reflectance within the

red-edge and NIR bands i.e., into normalized (NDVI) and ratio forms of vegetation indices.

This result was associated with the behavior of NIR wavebands on the geometrical

structure of the plant canopy. There were no significant effects of variety on grain yield

regression models using derivative-based red-edge indices. The findings from this study

showed that rice grain yield may be more accurately predicted using red-edge-based

normalized and ratio indices than red-based normalized and ratio indices. Further studies

should focus on developing a generalized model using these vegetation indices across

different varieties.
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